biological and medical applications
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 4)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 117
Author(s):  
Xiaohong Li ◽  
Junping Duan ◽  
Zeng Qu ◽  
Jiayun Wang ◽  
Miaomiao Ji ◽  
...  

Cell separation has become @important in biological and medical applications. Dielectrophoresis (DEP) is widely used due to the advantages it offers, such as the lack of a requirement for biological markers and the fact that it involves no damage to cells or particles. This study aimed to report a novel approach combining 3D sidewall electrodes and contraction/expansion (CEA) structures to separate three kinds of particles with different sizes or dielectric properties continuously. The separation was achieved through the interaction between electrophoretic forces and inertia forces. The CEA channel was capable of sorting particles with different sizes due to inertial forces, and also enhanced the nonuniformity of the electric field. The 3D electrodes generated a non-uniform electric field at the same height as the channels, which increased the action range of the DEP force. Finite element simulations using the commercial software, COMSOL Multiphysics 5.4, were performed to determine the flow field distributions, electric field distributions, and particle trajectories. The separation experiments were assessed by separating 4 µm polystyrene (PS) particles from 20 µm PS particles at different flow rates by experiencing positive and negative DEP. Subsequently, the sorting performances of the 4 µm PS particles, 20 µm PS particles, and 4 µm silica particles with different solution conductivities were observed. Both the numerical simulations and the practical particle separation displayed high separating efficiency (separation of 4 µm PS particles, 94.2%; separation of 20 µm PS particles, 92.1%; separation of 4 µm Silica particles, 95.3%). The proposed approach is expected to open a new approach to cell sorting and separating.


2021 ◽  
Author(s):  
YoungJu Jo ◽  
Wei Sun Park ◽  
YongKeun Park

Abstract Holotomography measures 3D refractive index (RI) distribution in cells and tissues without exogenous labeling. Here we describe a protocol for holotomographic imaging of generic eukaryotic cells using a standardized Tomocube holotomographic microscope. Combined with the recent advances in machine learning, holotomographic imaging enables a broad range of new biological and medical applications.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1238
Author(s):  
Yan Chen ◽  
Wenpeng Liu ◽  
Hao Zhang ◽  
Daihua Zhang ◽  
Xiaoliang Guo

Low-abundance biomolecule detection is very crucial in many biological and medical applications. In this paper, we present a novel electrolyte-gated graphene field-effect transistor (EGFET) biosensor consisting of acoustic tweezers to increase the sensitivity. The acoustic tweezers are based on a high-frequency bulk acoustic resonator with thousands of MHz, which has excellent ability to concentrate nanoparticles. The operating principle of the acoustic tweezers to concentrate biomolecules is analyzed and verified by experiments. After the actuation of acoustic tweezers for 10 min, the IgG molecules are accumulated onto the graphene. The sensitivities of the EGFET biosensor with accumulation and without accumulation are compared. As a result, the sensitivity of the graphene-based biosensor is remarkably increased using SMR as the biomolecule concentrator. Since the device has advantages such as miniaturized size, low reagent consumption, high sensitivity, and rapid detection, we expect it to be readily applied to many biological and medical applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258146
Author(s):  
M. Hou ◽  
M. J. Fagan

As a common feature, bilateral symmetry of biological forms is ubiquitous, but in fact rarely exact. In a setting of analytic geometry, bilateral symmetry is defined with respect to a point, line or plane, and the well-known notions of fluctuating asymmetry, directional asymmetry and antisymmetry are recast. A meticulous scheme for asymmetry assessments is proposed and explicit solutions to them are derived. An investigation into observational errors of points representing the geometric structure of an object offers a baseline reference for asymmetry assessment of the object. The proposed assessments are applicable to individual, part or all point pairs at both individual and collective levels. The exact relationship between the developed treatments and the widely used Procrustes method in asymmetry assessment is examined. An application of the proposed assessments to a large collection of human skull data in the form of 3D landmark coordinates finds: (a) asymmetry of most skulls is not fluctuating, but directional if measured about a plane fitted to shared landmarks or side landmarks for balancing; (b) asymmetry becomes completely fluctuating if one side of a skull could be slightly rotated and translated with respect to the other side; (c) female skulls are more asymmetric than male skulls. The methodology developed in this study is rigorous and transparent, and lays an analytical base for investigation of structural symmetries and asymmetries in a wide range of biological and medical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1968
Author(s):  
Mina Zare ◽  
Karolina Dziemidowicz ◽  
Gareth R. Williams ◽  
Seeram Ramakrishna

Electrospinning is an inexpensive and powerful method that employs a polymer solution and strong electric field to produce nanofibers. These can be applied in diverse biological and medical applications. Due to their large surface area, controllable surface functionalization and properties, and typically high biocompatibility electrospun nanofibers are recognized as promising materials for the manufacturing of drug delivery systems. Electrospinning offers the potential to formulate poorly soluble drugs as amorphous solid dispersions to improve solubility, bioavailability and targeting of drug release. It is also a successful strategy for the encapsulation of nutraceuticals. This review aims to briefly discuss the concept of electrospinning and recent progress in manufacturing electrospun drug delivery systems. It will further consider in detail the encapsulation of nutraceuticals, particularly probiotics.


Author(s):  
Makafui Y. Folikumah ◽  
Marc Behl ◽  
Andreas Lendlein

Abstract Identification of patterns in chemical reaction pathways aids in the effective design of molecules for specific applications. Here, we report on model reactions with a water-soluble single thiol-thioester exchange (TTE) reaction substrate, which was designed taking in view biological and medical applications. This substrate consists of the thio-depsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) and does not yield foul-smelling thiol exchange products when compared with aromatic thiol containing single TTE substrates. TDP generates an α,ω-dithiol crosslinker in situ in a ‘pseudo intramolecular’ TTE. Competitive intermolecular TTE of TDP with externally added “basic” thiols increased the crosslinker concentration whilst “acidic” thiols decreased its concentration. TDP could potentially enable in situ bioconjugation and crosslinking applications. Graphic abstract The competition between ‘pseudo intramolecular’ and intermolecular exchange of a peptide-based thiol-thioester exchange (TTE) substrate can be used to control the relative amount of final exchange products based on size and pKa values of externally added thiols. Potential application of this system can be seen in the development of TTE substrates for the rapid identification of thiols by dynamic combinatorial screening.


Author(s):  
Marko Milovanovic ◽  
Lydia Mihailowitsch ◽  
Mathusiha Santhirasegaran ◽  
Volker Brandt ◽  
Joerg C. Tiller

Abstract Hydrogels with good mechanical properties have great importance in biological and medical applications. Double-network (DN) hydrogels were found to be very tough materials. If one of the two network phases is an inorganic material, the DN hydrogels also become very stiff without losing their toughness. So far, the only example of such an organic–inorganic DN hydrogel is based on calcium phosphate, which takes about a week to be formed as an amorphous inorganic phase by enzyme-induced mineralization. An alternative organic–inorganic DN hydrogel, based on amorphous CaCO3, which can be formed as inorganic phase within hours, was designed in this study. The precipitation of CaCO3 within a hydrogel was induced by urease and a urea/CaCl2 calcification medium. The amorphous character of the CaCO3 was retained by using the previously reported crystallization inhibiting effects of N-(phosphonomethyl)glycine (PMGly). The connection between organic and inorganic phases via reversible bonds was realized by the introduction of ionic groups. The best results were obtained by copolymerization of acrylamide (AAm) and sodium acrylate (SA), which led to water-swollen organic–inorganic DN hydrogels with a high Young’s modulus (455 ± 80 MPa), remarkable tensile strength (3.4 ± 0.7 MPa) and fracture toughness (1.1 ± 0.2 kJ m−2). Graphical Abstract The present manuscript describes the method of enzymatic mineralization of hydrogels for the production of ultrastiff and strong composite hydrogels. By forming a double-network structure based on an organic and an inorganic phase, it is possible to improve the mechanical properties of a hydrogel, such as stiffness and strength, by several orders of magnitude. The key to this is the formation of a percolating, amorphous inorganic phase, which is achieved by inhibiting crystallization of precipitated amorphous CaCO3 with N-(phosphonomethyl)glycine and controlling the nanostructure with co polymerized sodium acrylate. This creates ultrastiff, strong and tough organic–inorganic double-network hydrogels.


2021 ◽  
Vol 3 (3) ◽  
pp. 5-15
Author(s):  
Pallavi Tripathi ◽  

Lately, there have been huge research interests in developing micro-electro-mechanical systems (MEMS) for various biological and medical applications. These bioMEMS based devices are considered instrumental to develop many life-saving biomedical technologies. To this end, a number of studies have focused on the developments of bioMEMS in the field of molecular biology, biotechnology, medicine, biochemical and material sciences and also in microsystems technology. The applications of bioMEMS are extensive that include diagnostic research, drug delivery, therapeutics, tissue engineering, biosensors and lab-on-a-chip systems for regenerative medicine, to name a few. Here, we present a perspective on the important breakthroughs in bioMEMS including the advances in microfabrication, monitoring and modulating cellular activities along with notable applications of bioMEMS in the modern healthcare sector.


Sign in / Sign up

Export Citation Format

Share Document