Numerical Investigation of the Flow in a Coaxial Piping System

Author(s):  
Charles Farbos de Luzan ◽  
Yuri Perelstein ◽  
Ephraim Gutmark ◽  
Thomas Frosell ◽  
Frederic Felten

A coaxial piping system (CPS) that involves a transition from a smaller annulus into a larger annulus is investigated to evaluate the generation of vortices and recirculation zones around the transition area. These areas are of interest for industrial applications where erosion within the piping system is a concern. The focus of this work is to evaluate the capabilities of Computational Fluid Dynamics (CFD) using commercial Reynolds-Averaged Navier Stokes (RANS) models to predict the regions and intensity of vortices and recirculation zones. A trusted grid is developed and used to compare turbulence models. The commercial CFD solver Fluent (Ansys Inc., USA) is used to solve the flow governing equations for different CFD numerical formulations, namely the one equation Spalart-Allmaras model, and steady-state RANS with different turbulence models (standard k-epsilon, k-epsilon realizable, k-epsilon RNG, standard k-omega, k-omega SST, and transition SST) [1]. CFD results are compared to time-averaged particle image velocimetry (PIV) measurements. The PIV provides 3D flow field measurements in the outer annulus of the piping system. Velocities in regions of interest were used to compare each model to the PIV results. An RMS comparison of the numerical results to the measured values is used as a quantitative evaluation of each turbulence model being considered. The results provide a useable CFD model for evaluation of the flow field of this flow field and highlights areas of uncertainty in the CFD results.

Author(s):  
M. P. Huijts ◽  
A. A. V. Perpignan ◽  
A. G. Rao

Abstract The flameless combustion (FC) regime is a promising technology for gas turbines, as it potentially yields lower NOx emissions while maintaining high combustion efficiencies. However, the application of FC to gas turbines is still challenging as required conditions for its occurrence depend on several factors such as reactants mixing, residence times, heat losses, and chemical time-scales. Since the mixing of the reactants and incoming fresh air-fuel mixture plays an important role in FC, the aerodynamic characteristics of the combustor are instrumental in determining the combustor emission performance. Focusing on the aerodynamic characteristics, this paper is dedicated to the visualization and description of the flow inside a jet-based combustor designed to operate under FC. The cylindrical combustor has a FLOX® burner head with 12 concentrically placed nozzles, while an acrylic cylinder allowed full optical access to the flow field. The investigation was performed for non-reactive flow. Using Particle Image Velocimetry and a Reynolds-averaged Navier-Stokes CFD analysis, the flow was visualized and modelled. The simulations were run with the Standard and Realizable k-ε (SKE and RKE, respectively), as well as a Reynolds Stress turbulence model. The effect of modifying the SKE model C1ε constant was also investigated. In the experimental campaign, the influence of combustion chamber length, nozzle diameter, and jet velocity were investigated with respect to flow structure, recirculation ratios and entrainment behavior. The results show that the flow structure is mainly dependent on nozzle diameters, while the jet momentum is the correct parameter to assess the recirculation impact of a certain jet flow. The numerical investigation shows that the turbulence intensity at the boundaries is an important parameter to accurately simulate the jet spreading. None of the used turbulence models fully represented the flow field. Nonetheless, the SKE model with model C1ε = 1.44 was the best at representing the jets penetration and vortex core positions, and the recirculation ratio values predicted by it were in good agreement.


Author(s):  
Derick Endicott ◽  
Samir Tambe ◽  
San-Mou Jeng

An experimental study has been carried out to investigate the isothermal aerodynamic behavior and to discern the effects on the flow-field resulting from interactions between low and high-swirl counter-rotating radial-radial air swirlers in three Lean Direct Injection configurations utilizing a 3 × 3 array of radial-radial swirlers. Configurations consisted of varying combinations of two swirlers featuring high and low swirl intensity. Two-dimensional velocity data is presented from the measurement of 37 planes spanning the width of the LDI array. Particle Image Velocimetry (PIV) was used to take velocity field measurements and to study the inter-swirler interactions. Three test cases were studied which utilized a combination of a low and high Swirl Number swirlers: the baseline case utilized 9 low swirl (SN about 0.6) swirlers, the second case used one high swirl (SN about 1.0) swirler in the center of the array, and the third case used 3 high swirl swirlers in a row within the array. The flow field developed by the three experimental cases differed significantly and inter-swirler interaction proved significant and highly complex. The velocity fields developed from swirlers in an array varied from that of the individual swirler, and as such, it should not be expected that the array have the same characteristics of the individual swirler. Placing a high-swirl swirler in a low-swirl array increased swirler interaction and led to substantial favorable changes in velocity fields and the recirculation zones developed downstream of each swirler in comparison to the baseline configuration including the development of a large CTRZ with weakened intensity for increased flame anchoring potential.


Author(s):  
Clemens Bernhard Domnick ◽  
Friedrich-Karl Benra ◽  
Dieter Brillert ◽  
Hans Josef Dohmen ◽  
Christian Musch

The unsteady flow in inlet valves for large steam turbines used in power stations was investigated using the method of computational fluid dynamics (CFD). As the topology of the flow depends on the stroke and the pressure ratio of the valve, the flow was investigated at several positions. Various turbulence models were applied to the valve to capture the unsteady flow field. Basic Reynolds-averaged Navier–Stokes (RANS) models, the scale adaptive simulation (SAS), and the scale adaptive simulation with zonal forcing (SAS-F, also called ZFLES) were evaluated. To clarify the cause of flow-induced valve vibrations, the investigation focused on the pressure field acting on the valve plug. It can be shown that acoustic modes are excited by the flow field. These modes cause unsteady forces that act on the valve plug. The influence of valve geometry on the acoustic eigenmodes was investigated to determine how to reduce the dynamic forces. Three major flow topologies that create different dynamic forces were identified.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2021 ◽  
pp. 146808742110131
Author(s):  
Xiaohang Fang ◽  
Li Shen ◽  
Christopher Willman ◽  
Rachel Magnanon ◽  
Giuseppe Virelli ◽  
...  

In this article, different manifold reduction techniques are implemented for the post-processing of Particle Image Velocimetry (PIV) images from a Spark Ignition Direct Injection (SIDI) engine. The methods are proposed to help make a more objective comparison between Reynolds-averaged Navier-Stokes (RANS) simulations and PIV experiments when Cycle-to-Cycle Variations (CCV) are present in the flow field. The two different methods used here are based on Singular Value Decomposition (SVD) principles where Proper Orthogonal Decomposition (POD) and Kernel Principal Component Analysis (KPCA) are used for representing linear and non-linear manifold reduction techniques. To the authors’ best knowledge, this is the first time a non-linear manifold reduction technique, such as KPCA, has ever been used in the study of in-cylinder flow fields. Both qualitative and quantitative studies are given to show the capability of each method in validating the simulation and incorporating CCV for each engine cycle. Traditional Relevance Index (RI) and two other previously developed novel indexes: the Weighted Relevance Index (WRI) and the Weighted Magnitude Index (WMI), are used for the quantitative study. The results indicate that both POD and KPCA show improvements in capturing the main flow field features compared to ensemble-averaged PIV experimental data and single cycle experimental flow fields while capturing CCV. Both methods present similar quantitative accuracy when using the three indexes. However, challenges were highlighted in the POD method for the selection of the number of POD modes needed for a representative reconstruction. When the flow field region presents a Gaussian distribution, the KPCA method is seen to provide a more objective numerical process as the reconstructed flow field will see convergence with an increasing number of modes due to its usage of Gaussian properties. No additional criterion is needed to determine how to reconstruct the main flow field feature. Using KPCA can, therefore, reduce the amount of analysis needed in the process of extracting the main flow field while incorporating CCV.


Author(s):  
Liju Su ◽  
Ramesh K. Agarwal

Supersonic steam ejectors are widely used in many industrial applications, for example for refrigeration and desalination. The experimental evaluation of the flow field inside the ejector is relatively difficult and costly due to the occurrence of shock after the velocity of the steam reaches over the sonic level in the ejector. In this paper, numerical simulations are conducted to investigate the detailed flow field inside a supersonic steam (water vapor being the working fluid) ejector. The commercial computational fluid dynamics (CFD) flow solver ANSYS-Fluent and the mesh generation software ANSYS-ICEM are used to predict the steam performance during the mixing inside the ejector by employing two turbulence models, the k-ω SST and the k-ε realizable models. The computed results are validated against the experimental data. The effects of operating conditions on the efficiency of the ejector such as the primary fluid pressure and condenser pressure are studied to obtain a better understanding of the mixing process and entrainment. Velocity contours, pressure plots and shock region analyses provide a good understanding for optimization of the ejector performance, in particular how to increase the entrainment ratio.


Author(s):  
Charles M. Dai ◽  
Ronald W. Miller

This paper reports on the comparison between computational simulations and experimental measurements of a surface vessel in steady turning conditions. The primary purpose of these efforts is to support the development of physics-based high fidelity maneuvering simulation tools by providing accurate and reliable hydrodynamic data with relevance to maneuvering performances. Reynolds Averaged Unsteady Navier Stokes Solver (URANS): CFDSHIPIOWA was used to perform simulations for validation purposes and for better understanding of the fundamental flow physics of a hull under maneuvering conditions. The Propeller effects were simulated using the actuator disk model included in CFDShip-Iowa. The actuator disk model prescribes a circumferential averaged body force with axial and tangential components. No propeller generated side forces are accounted for in the model. This paper examines the effects of actuator disk model on the overall fidelity of a RANS based ship maneuvering simulations. Both experiments and simulations provide physical insights into the complex flow interactions between the hull and various appendages, the rudders and the propellers. The experimental effort consists of flow field measurements using Stereo Particle-Image Velocimetry (SPIV) in the stern region of the model and force and moment measurements on the whole ship and on ship components such as the bilge keels, the rudders, and the propellers. Comparisons between simulations and experimental measurements were made for velocity distributions at different transverse planes along the ship axis and different forces components for hull, appendages and rudders. The actuator disk model does not predict any propeller generated side forces in the code and they need to be taken into account when comparing hull and appendages generated side forces in the simulations. The simulations were compared with experimental results and they both demonstrate the cross flow effect on the transverse forces and the propeller slip streams generated by the propellers during steady turning conditions. The hull forces (include hull, bilge keels, skeg, shafting and strut) predictions were better for large turning circle case as compared with smaller turning circle. Despite flow field simulations appear to capture gross flow features qualitatively; detailed examinations of flow distributions reveal discrepancies in predictions of propeller wake locations and secondary flow structures. The qualitative comparisons for the rudders forces also reveal large discrepancies and it was shown that the primary cause of discrepancies is due to poor predictions of velocity inflow at the rudder plane.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Alexandros Terzis ◽  
Christoforos Skourides ◽  
Peter Ott ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand

Integrally cast turbine airfoils with wall-integrated cooling cavities are greatly applicable in modern turbines providing enhanced heat exchange capabilities compared to conventional cooling passages. In such arrangements, narrow impingement channels can be formed where the generated crossflow is an important design parameter for the achievement of the desired cooling efficiency. In this study, a regulation of the generated crossflow for a narrow impingement channel consisting of a single row of five inline jets is obtained by varying the width of the channel in the streamwise direction. A divergent impingement channel is therefore investigated and compared to a uniform channel of the same open area ratio. Flow field and wall heat transfer experiments are carried out at engine representative Reynolds numbers using particle image velocimetry (PIV) and liquid crystal thermography (LCT). The PIV measurements are taken at planes normal to the target wall along the centerline for each individual jet, providing quantitative flow visualization of jet and crossflow interactions. The heat transfer distributions on the target plate of the channels are evaluated with transient techniques and a multilayer of liquid crystals (LCs). Effects of channel divergence are investigated combining both the heat transfer and flow field measurements. The applicability of existing heat transfer correlations for uniform jet arrays to divergent geometries is also discussed.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1687
Author(s):  
Chao Yu ◽  
Xiangyao Xue ◽  
Kui Shi ◽  
Mingzhen Shao ◽  
Yang Liu

This paper compares the performances of three Computational Fluid Dynamics (CFD) turbulence models, Reynolds Average Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES), for simulating the flow field of a wheel loader engine compartment. The distributions of pressure fields, velocity fields, and vortex structures in a hybrid-grided engine compartment model are analyzed. The result reveals that the LES and DES can capture the detachment and breakage of the trailing edge more abundantly and meticulously than RANS. Additionally, by comparing the relevant calculation time, the feasibility of the DES model is proved to simulate the three-dimensional unsteady flow of engine compartment efficiently and accurately. This paper aims to provide a guiding idea for simulating the transient flow field in the engine compartment, which could serve as a theoretical basis for optimizing and improving the layout of the components of the engine compartment.


1988 ◽  
Vol 110 (3) ◽  
pp. 315-325 ◽  
Author(s):  
L. T. Tam ◽  
A. J. Przekwas ◽  
A. Muszynska ◽  
R. C. Hendricks ◽  
M. J. Braun ◽  
...  

A numerical model based on a transformed, conservative form of the three-dimensional Navier-Stokes equations and an analytical model based on “lumped” fluid parameters are presented and compared with studies of modeled rotor/bearing/seal systems. The rotor destabilizing factors are related to the rotative character of the flow field. It is shown that these destabilizing factors can be reduced through a descrease in the fluid average circumferential velocity. However, the rotative character of the flow field is a complex three-dimensional system with bifurcated secondary flow patterns that significantly alter the fluid circumferential velocity. By transforming the Navier-Stokes equations to those for a rotating observer and using the numerical code PHOENICS-84 with a nonorthogonal body fitted grid, several numerical experiments were carried out to demonstrate the character of this complex flow field. In general, fluid injection and/or preswirl of the flow field opposing the shaft rotation significantly intensified these secondary recirculation zones and thus reduced the average circumferential velocity, while injection or preswirl in the direction of rotation significantly weakened these zones. A decrease in average circumferential velocity was related to an increase in the strength of the recirculation zones and thereby promoted stability. The influence of the axial flow was analyzed. The lumped model of fluid dynamic force based on the average circumferential velocity ratio (as opposed to the bearing/seal coefficient model) well described the obtained results for relatively large but limited ranges of parameters. This lumped model is extremely useful in rotor/bearing/seal system dynamic analysis and should be widely recommended. Fluid dynamic forces and leakage rates were calculated and compared with seal data where the working fluid was bromotrifluoromethane (CBrF3). The radial and tangential force predictions were in reasonable agreement with selected experimental data. Nonsynchronous perturbation provided meaningful information for system lumped parameter identification from numerical experiment data.


Sign in / Sign up

Export Citation Format

Share Document