Experimental Study of Mixing and Entrainment in a Horizontal Turbulent Stratified Jet

Author(s):  
Duo Xu ◽  
Jun Chen

The mixing efficiency, flux Richardson number Rif, is investigated in a horizontally injected turbulent stratified jet with a co-existence of stable and unstable stratifications. The high resolution experimental data from a developed laser-based technique show the statistical relationship between Rif and the gradient Richardson number Rig. In addition, the data are used to study the development of entrainment by two approaches, and compared with theoretical predictions.

2021 ◽  
Vol 928 ◽  
Author(s):  
S.F. Lewin ◽  
C.P. Caulfield

We compare the properties of the turbulence induced by the breakdown of Kelvin–Helmholtz instability (KHI) at high Reynolds number in two classes of stratified shear flows where the background density profile is given by either a linear function or a hyperbolic tangent function, at different values of the minimum initial gradient Richardson number ${{Ri}}_0$ . Considering global and local measures of mixing defined in terms of either the irreversible mixing rate $\mathscr {M}$ associated with the time evolution of the background potential energy, or an appropriately defined density variance dissipation rate $\chi$ , we find that the proliferation of secondary instabilities strongly affects the efficiency of mixing early in the flow evolution, and also that these secondary instabilities are highly sensitive to flow perturbations that are added at the point of maximal (two-dimensional) billow amplitude. Nevertheless, mixing efficiency does not appear to depend strongly on the far field density structure, a feature supported by the evolution of local horizontally averaged values of the buoyancy Reynolds number ${Re}_b$ and gradient Richardson number ${Ri}_g$ . We investigate the applicability of various proposed scaling laws for flux coefficients $\varGamma$ in terms of characteristic length scales, in particular discussing the relevance of the overturning ‘Thorpe scale’ in stratified turbulent flows. Finally, we compare a variety of empirical model parameterizations used to compute diapycnal diffusivity in an oceanographic context, arguing that for transient flows such as KHI-induced turbulence, simple models that relate the ‘age’ of a turbulent event to its mixing efficiency can produce reasonably robust mixing estimates.


2002 ◽  
Vol 459 ◽  
pp. 307-316 ◽  
Author(s):  
E. R. PARDYJAK ◽  
P. MONTI ◽  
H. J. S. FERNANDO

The flux Richardson number Rf (also known as the mixing efficiency) for the stably stratified atmospheric boundary layer is investigated as a function of the gradient Richardson number Rig using data taken during two field studies: the Vertical Transport and Mixing Experiment (VTMX) in Salt Lake City, Utah (October 2000), and a long-term rural field data set from Technical Area 6 (TA-6) at Los Alamos National Laboratory, New Mexico. The results show the existence of a maximum Rf (0.4–0.5) at a gradient Richardson number of approximately unity. These large-Reynolds-number results agree well with recent laboratory stratified shear layer measurements, but are at odds with some commonly used Rf parameterizations, particularly under high-Rig conditions. The observed variations in buoyancy flux and turbulent kinetic energy production are consistent with the concept of global intermittency of the atmospheric stable boundary layer.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
Ivelin Kostov

In the work brought some experimental data of kinematic parameters of movement of cars forced idle, as the software product was used to diagnose 900 ATS, which recorded kinematic parameters of vehicle. On the basis of the conducted experimental research results are shown tabulated and analysed.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Francesco Paolo La Mantia ◽  
Maria Chiara Mistretta ◽  
Vincenzo Titone

In this work, an additive model for the prediction of the rheological and mechanical properties of monopolymer blends made by virgin and reprocessed components is proposed. A polypropylene sample has been reprocessed more times in an extruder and monopolymer blends have been prepared by simulating an industrial process. The scraps are exposed to regrinding and are melt reprocessed before mixing with the virgin polymer. The reprocessed polymer is, then, subjected to some thermomechanical degradation. Rheological and mechanical experimental data have been compared with the theoretical predictions. The results obtained showed that the values of this simple additive model are a very good fit for the experimental values of both rheological and mechanical properties.


2019 ◽  
Vol 55 (11) ◽  
Author(s):  
C. S. Akondi ◽  
K. Bantawa ◽  
D. M. Manley ◽  
S. Abt ◽  
P. Achenbach ◽  
...  

Abstract.This work measured $ \mathrm{d}\sigma/\mathrm{d}\Omega$dσ/dΩ for neutral kaon photoproduction reactions from threshold up to a c.m. energy of 1855MeV, focussing specifically on the $ \gamma p\rightarrow K^0\Sigma^+$γp→K0Σ+, $ \gamma n\rightarrow K^0\Lambda$γn→K0Λ, and $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 reactions. Our results for $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 are the first-ever measurements for that reaction. These data will provide insight into the properties of $ N^{\ast}$N* resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $ \pi N$πN channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.


1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


Sign in / Sign up

Export Citation Format

Share Document