Mass Flow Performance for Large Aspect Ratio Supersonic Boundary Layer Bleed Holes

Author(s):  
George Papadopoulos ◽  
Gary Go ◽  
Frank Celentano ◽  
Robert Bakos

Accurate estimation of the bleed orifice flow coefficient, which relates bleed plenum pressure to mass flow removed, is important to predicting inlet performance, as well as, estimating bleed drag. Much of the flow coefficient data at conditions of interest to inlet designers is based on bleed plates with multiple rows of holes. The flow coefficient for these plates is typically presented as a function of bleed plenum pressure normalized by the freestream total pressure. Numerical simulations of the flowfield at the entrance of the bleed hole show that the flow is complex, especially for supersonic free stream flow, whereby an alternating expansion/compression wave pattern initiates at the porous bleed surface as the flow turns to enter the hole. This implies that a significant portion of the tangential flow total pressure is given up upon entering a 90° hole. For large aspect ratio (length-to-diameter ratio) bleed holes the effect of the frictional pressure drop is to lower the required plenum pressure to achieve a given mass flow. Conversely, the mass flow will be reduced due to the higher pressure at the start of the duct. Empirical data show that the flow coefficient for supersonic boundary layer bleed holes stops increasing as the plenum pressure to total pressure ratio continues to decrease, indicating that the flow becomes choked. Thus the chocked flow condition helps to make the bleed hole mass flow under these conditions less sensitive or insensitive to the effects of friction caused by the extended hole length. The extent to which this happens is the focus of the current effort, with the paper reporting on experimental and numerical results on flow characteristics and mass flow performance of supersonic bleed holes featuring a range of aspect ratios beyond what has been reported in the past.

Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 78
Author(s):  
Kalyani Bhide ◽  
Kiran Siddappaji ◽  
Shaaban Abdallah

This work attempts to connect internal flow to the exit flow and supersonic jet mixing in rectangular nozzles with low to high aspect ratios (AR). A series of low and high aspect ratio rectangular nozzles (design Mach number = 1.5) with sharp throats are numerically investigated using steady state Reynolds-averaged Navier−Stokes (RANS) computational fluid dynamics (CFD) with k-omega shear stress transport (SST) turbulence model. The numerical shadowgraph reveals stronger shocks at low ARs which become weaker with increasing AR due to less flow turning at the throat. Stronger shocks cause more aggressive gradients in the boundary layer resulting in higher wall shear stresses at the throat for low ARs. The boundary layer becomes thick at low ARs creating more aerodynamic blockage. The boundary layer exiting the nozzle transforms into a shear layer and grows thicker in the high AR nozzle with a smaller potential core length. The variation in the boundary layer growth on the minor and major axis is explained and its growth downstream the throat has a significant role in nozzle exit flow characteristics. The loss mechanism throughout the flow is shown as the entropy generated due to viscous dissipation and accounts for supersonic jet mixing. Axis switching phenomenon is also addressed by analyzing the streamwise vorticity fields at various locations downstream from the nozzle exit.


Author(s):  
Alexandrina Untaroiu ◽  
Costin D. Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire

Traditional annular seal models are based on bulk flow theory. While these methods are computationally efficient and can predict dynamic properties fairly well for short seals, they lack accuracy in cases of seals with complex geometry or with large aspect ratios (above 1.0). In this paper, the linearized rotordynamic coefficients for a seal with large aspect ratio are calculated by means of a three dimensional CFD analysis performed to predict the fluid-induced forces acting on the rotor. For comparison, the dynamic coefficients were also calculated using two other codes: one developed on the bulk flow method and one based on finite difference method. These two sets of dynamic coefficients were compared with those obtained from CFD. Results show a reasonable correlation for the direct stiffness estimates, with largest value predicted by CFD. In terms of cross-coupled stiffness, which is known to be directly related to cross-coupled forces that contribute to rotor instability, the CFD predicts also the highest value; however a much larger discrepancy can be observed for this term (73% higher than value predicted by finite difference method and 79% higher than bulk flow code prediction). Similar large differences in predictions one can see in the estimates for damping and direct mass coefficients, where highest values are predicted by the bulk flow method. These large variations in damping and mass coefficients, and most importantly the large difference in the cross-coupled stiffness predictions, may be attributed to the large difference in seal geometry (i.e. the large aspect ratio AR>1.0 of this seal model vs. the short seal configuration the bulk flow code is usually calibrated for, using an empirical friction factor).


2020 ◽  
Vol 12 (20) ◽  
pp. 8579
Author(s):  
Kai Lv ◽  
Yudong Xie ◽  
Xinbiao Zhang ◽  
Yong Wang

Integrating vertical-axis runners into ball valves for energy harvesting from pressurized pipes in water supply systems has become a promising scheme of self-supplying power (referred to as the “GreenValve” scheme). In addition to energy harvesting, the GreenValve configuration also has the function of fluid regulating, which makes a qualitative breakthrough in both structure and function. However, the runner specially used to match the ball valve has not been fully studied and designed. Hence, based on the traditional Savonius rotor, a modified semi-elliptical runner is proposed in this study. To better match the ball valve structurally, the roundness of the runner at blade tip position is improved and, thus, the initial runner configuration is obtained. Moreover, research on blade profile flatness and runner aspect ratio is conducted in FLUENT software to be more functionally compatible with the ball valve. Numerical results indicate that the GreenValve always performs best in terms of shaft power at 25% opening regardless of the aspect ratio and the flatness. When the flatness value is equal to 0.7, the GreenValve presents the maximum shaft power and the second highest flow coefficient which is only 1.9% lower than the maximum value. Comparison results of three models with different aspect ratios reveal that the model with the smallest aspect ratio has a slight reduction in flow capacity while a significant improvement in shaft power, reaching a maximum shaft power of 78.6W.


1970 ◽  
Vol 92 (4) ◽  
pp. 390-398
Author(s):  
H. F. L. Griepentrog

This paper describes a method for the prediction of the transonic flow field in a high solidity, high turning cascade, suitable for use as stator of a shock-in-rotor supersonic compressor stage. Effects of shock boundary layer interaction is taken into account by empirical correlation, valid for blade aspect ratios below unity. Use of partial slots for reduction of the secondary flows is briefly discussed and a correlation on slot efficiency is presented.


Author(s):  
Hide S. Koyama ◽  
Shoichiro Tatsuta ◽  
Ema Tamura ◽  
Hani H. Nigim

Abstract To clarify the stabilization, destabilization and secondary flow effects of the Coriolis force on the turbulence structure in rotating channels with high and low aspect ratios, experimental investigations were undertaken by using a rotating wind tunnel about 2 meters in diameter. A hot-wire anemometer and more than 6 hot-wire probes with fine resistance wire, each inclined at a known angle to the main flow, were used for the measurements of time-mean velocities and 6 components of Reynolds normal and shear stresses. An optical transmission system of electrical signals from a rotating apparatus to the stationary system was used to immunize the electrical noise. The hot-wire probe was traversed with sufficient accuracy. Phenomena of the stratification, Taylor-Görtler type vortices in the destabilized nominal two-dimensional turbulent boundary layer, relaminarization from turbulent to laminar boundary layer in the high aspect ratio channel and a pair of longitudinal flat vortices in the low aspect ratio channel were observed, and discussed in detail by using the low of conservation of angular momentum, the vorticity transport equation and the Reynolds stress transport equations in a rotating frame.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
P. Zunino ◽  
F. Bertini ◽  
...  

The paper analyzes losses and the loss generation mechanisms in a low-pressure turbine (LPT) cascade by proper orthogonal decomposition (POD) applied to measurements. Total pressure probes and time-resolved particle image velocimetry (TR-PIV) are used to determine the flow field and performance of the blade with steady and unsteady inflow conditions varying the flow incidence. The total pressure loss coefficient is computed by traversing two Kiel probes upstream and downstream of the cascade simultaneously. This procedure allows a very accurate estimation of the total pressure loss coefficient also in the potential flow region affected by incoming wake migration. The TR-PIV investigation concentrates on the aft portion of the suction side boundary layer downstream of peak suction. In this adverse pressure gradient region, the interaction between the wake and the boundary layer is the strongest, and it leads to the largest deviation from a steady loss mechanism. POD applied to this portion of the domain provides a statistical representation of the flow oscillations by splitting the effects induced by the different dynamics. The paper also describes how POD can dissect the loss generation mechanisms by separating the contributions to the Reynolds stress tensor from the different modes. The steady condition loss generation, driven by boundary layer streaks and separation, is augmented in the presence of incoming wakes by the wake–boundary layer interaction and by the wake dilation mechanism. Wake migration losses have been found to be almost insensitive to incidence variation between nominal and negative (up to −9 deg) while at positive incidence, the losses have a steep increase due to the alteration of the wake path induced by the different loading distribution.


AIAA Journal ◽  
2017 ◽  
Vol 55 (9) ◽  
pp. 2919-2928
Author(s):  
Miranda Pizzella ◽  
Sally Warning ◽  
Mary Jennerjohn ◽  
Mark McQuilling ◽  
Ashley Purkey ◽  
...  

Author(s):  
Helen A. Amorin ◽  
Xingjun Fang ◽  
Mark F. Tachie

This paper reports an experimental study conducted to investigate the effects of aspect ratio on the reattachment length and statistical properties in turbulent flow over three-dimensional surface-mounted bluff bodies. This study focuses on a surface-mounted body whose height is significantly smaller than the thickness of the approaching turbulent boundary layer. The studied aspect ratios of the step range from w/h = 0.5 to 20, where w and h denote the spanwise width and height of the step, respectively. All experiments were carried out in an open water channel, and the velocity measurements were performed using a time-resolved particle image velocimetry (TR-PIV) system. The Reynolds number, based on the freestream of the approach boundary layer and step height, is 12540, while the ratio of the boundary layer to step height is 4.83. Two distinct regions of separation are observed on top of the step and downstream of the step. In both separation regions, the reattachment length increases monotonically as aspect ratio increases from w/h = 0.5 to 8, and the reattachment length reaches an asymptotic value and does not vary significantly with aspect ratio larger than 8. The effects of aspect ratios on the mean velocities and Reynolds stresses were also examined.


2019 ◽  
Vol 875 ◽  
pp. 929-960 ◽  
Author(s):  
Yendrew Yauwenas ◽  
Ric Porteous ◽  
Danielle J. Moreau ◽  
Con J. Doolan

This paper presents a combined experimental and large-eddy simulation study to characterise the effect of aspect ratio on the near-wake structure of a square finite wall-mounted cylinder (FWMC). The cylinder aspect ratios (span $L$ to width $W$) investigated in the experiments were $1.4\leqslant L/W\leqslant 21.4$ and the oncoming boundary-layer thicknesses were $1.3W$ and $0.9W$ at a Reynolds number based on cylinder width of $1.4\times 10^{4}$ and $1.1\times 10^{4}$, respectively. In complementary simulations, the cylinder aspect ratios investigated were 1.4, 4.3, 10 and 18.6. The cylinder wake structure was visualised in three-dimensional space using a vortex core detection method and decomposed to its oscillation modes using the spectral proper orthogonal decomposition (SPOD) technique. A parametric diagram is proposed to predict whether the time-averaged wake structure is a dipole or a quadrupole pattern, based on oncoming boundary-layer height and aspect ratio. Cellular shedding occurs when the aspect ratio is high with up to three shedding cells occurring across the span for aspect ratios $L/W>18$. Each of these cells sheds at a distinct frequency, as evidenced by the spectral content of the surface pressure measured on the side face and the near-wake velocity. Amplitude modulation is also observed in the vortex shedding, which explains the amplitude modulation of the acoustic pressure emitted by square FWMCs. SPOD is shown to be a viable method to identify the occurrence of cellular shedding in the wake.


Author(s):  
Asad Asghar ◽  
Robert A. Stowe ◽  
William D. E. Allan ◽  
Derrick Alexander

This paper reports the internal performance evaluation of S-duct diffusers with different entrance aspect ratios as part of an ongoing parametric investigation of a generic S-duct inlet. The generic S-duct diffusers were a rectangular-entrance (aspect ratio 1.5 and 2.0) transitioning S-duct diffuser in high subsonic (Mach number > 0.8) flow. The test section was manufactured using rapid prototyping for facilitating the parametric investigation of the geometry. Streamwise static pressure and exit-plane total pressure were measured in a test-rig using surface pressure taps and a 5-probe rotating rake, respectively and the baseline and a variant was simulated through computational fluid dynamics. The investigation indicated the presence of streamwise and circumferential pressure gradients leading to a three dimensional flow in the S-duct diffuser and distortion at the exit plane. The static pressure recovery increased for the diffuser with higher aspect ratio. Total pressure losses and circumferential and radial distortions at the exit plane were higher than that of the podded nacelle type of inlet. The increase in the total pressure recovery was observed for the increase in the aspect ratio for the baseline area ratio (1.57) S-ducts, but without a clear trend for the other area ratio (1.8) ducts. The work represents the beginning of the development of a database for the performance of a particular type of generic inlet. This database will be useful for predicting the performance of aero-engines and air vehicles in high subsonic flight.


Sign in / Sign up

Export Citation Format

Share Document