Innovative Solution of an Integrated Motor Pump Assembly

Author(s):  
Wieslaw Fiebig ◽  
Piotr Cependa ◽  
Paulina Jedraszczyk ◽  
Hubert Kuczwara

In this paper an innovative design solution of a vane pump integrated with an electric motor is presented. In the proposed solution the double vane pump is embedded into the rotor of electric permanent magnets motor (BLDC). CFD simulations of the flow have been carried out to analyze the flow in the pump crossover areas and to avoid the cavitation phenomena at the inlet channel. Results of experimental investigations of the motor pump assembly prototype are presented.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5949
Author(s):  
Marek Pawel Ciurys ◽  
Wieslaw Fiebig

The article presents an innovative design solution of a balanced vane pump integrated with an electric motor that has been developed by the authors. The designed and constructed bench, which enables testing of the system: power supply, converter, ntegrated motor—pump assembly and hydraulic load at different motor speeds and different pressures in the hydraulic system, is described. The electromagnetic and hydraulic processes in the motor-pump unit are investigated, and new, previously unpublished, results of experimental studies at steady and dynamic states are presented. The results of the study showed good dynamics of the integrated motor-pump assembly and proved its suitability to control the pump flow rate, and thus, the speed of the hydraulic cylinder or the speed of the hydraulic motor.


2020 ◽  
Vol 151 (3) ◽  
pp. 21-29
Author(s):  
Waldemar Świderski ◽  
Paweł Hłosta ◽  
Grzegorz Polak ◽  
Dariusz Tymiński

The paper presents a concept of a heated active thermal target designed for training and shooting with thermal sights at night conditions. The innovative solution contains a control system and a target with specially matched parameters providing several times greater power at the beginning of heating than the power needed to maintain a demanded difference of temperatures in the steady state. After reaching the required temperature, the control system does not give full voltage to the target. The times of voltage supply and its switching off are so selected that the temperature of the target corresponds to the required value. The time needed to obtain the required temperature in the proposed solution is several times shorter than in the currently used configurations. This allows the heater to be activated at the same time as the blade lift is activated. The solution eliminates disadvantages of heated targets used for shooting up to now.


2017 ◽  
Vol 48 (4) ◽  
pp. 357-362
Author(s):  
Denis Vyacheslavovich Anokhin ◽  
Evgenia Sergeevna Dyagileva ◽  
Oleg Petrovich Minin ◽  
Dmitrii Aleksandrovich Olishevskii ◽  
Sergei Grigorievich Shevel'kov

Author(s):  
I. N. Belezyakov ◽  
K. G. Arakancev

At present time there is a need to develop a methodology for electric motors design which will ensure the optimality of their geometrical parameters according to one or a set of criterias. With the growth of computer calculating power it becomes possible to develop methods based on numerical methods for electric machines computing. The article describes method of a singlecriterion evolutionary optimization of synchronous electric machines with permanent magnets taking into account the given restrictions on the overall dimensions and characteristics of structural materials. The described approach is based on applying of a genetic algorithm for carrying out evolutionary optimization of geometric parameters of a given configuration of electric motor. Optimization criteria may be different, but in automatic control systems high requirements are imposed to electromagnetic torque electric machine produces. During genetic algorithm work it optimizes given geometric parameters of the electric motor according to the criterion of its torque value, which is being calculated using finite element method.


2021 ◽  
Vol 7 (7) ◽  
pp. 19-25
Author(s):  
Andrey V. NAUMOV ◽  
◽  
Alexey V. POLYAKOV ◽  
Mikhail I. SURIN ◽  
Vladimir I. SHCHERBAKOV ◽  
...  

The electromechanical model for analyzing a homopolar electric motor with a magnetic system made using second-generation high-temperature superconductors (HTSC 2G) is described. Homopolar electric motors made with a disk-shaped rotor have the simplest design of their magnetic system and heavy-current contact. Owing to the use of HTSC 2G conductors for producing constant magnetic field in the rotor area, it becomes possible to achieve a higher current density in the windings, thereby increasing the motor power capacity. Due to the HTSC ability to operate at the liquid nitrogen temperature (77 K), it becomes possible to have a simpler cryostat design in comparison with magnetic systems based on low-temperature superconductors. For large-capacity homopolar motors, the use of liquid metal contacts for supplying current to the rotating rotor seems to be the most promising design solution. The advantage of motors of this type is that their torque depends linearly on the rotor current. The homopolar motor operation governed by a proportional-integral-differentiating (PID) controller was simulated using the SciLab Xcos software. The application of the analysis model for selecting the optimal PID-controller coefficients is demonstrated. The electric motor dynamic operation modes are analyzed. The numerical simulation results are compared with the previously obtained experimental data.


Vestnik IGEU ◽  
2020 ◽  
pp. 31-45
Author(s):  
T.H. Abuziarov ◽  
A.S. Plehov ◽  
A.B. Dar’enkov ◽  
A.I. Ermolaev

When designing electric drives based on brushless DC motors with permanent magnets (BLDC), which have low level torque pulsations, the problem of modelling non-standard topological solutions appears. The known models of BLDC motors are either based on the assumptions about the symmetry of the stator pa-rameters of the electric motor and/or the ideal form of the phase back-EMF waveform, which reduce the accuracy of evaluating the effectiveness of the proposed solutions or prove unusable for modelling an operation of the electric motor with a non-standard semiconductor converter. It is necessary to develop a mathematical model of the BLDC motor-based electric drive that takes into account the structural features of the electric motor and allows for semiconductor converter configuration variability. The model is designed in the Matlab Simulink environment. The verification is carried out by comparing the modelling results with experimental data obtained previously by other researchers. The proposed method for generating phase back-EMF in the BLDC motor model provides the possibility for the user to set the EMF form templates independent for each phase. The proposed method for stator circuit simulating provides the user with access to each of the stator windings leads as well as with the possibility of asymmetric determination of each parameter of the electric motor. Upon verification, it has been shown that the difference in the control points between the simulated and experimental speed-torque curves does not exceed 3,5 %. The developed model allows analyzing the static and dynamic characteristics of operation modes of non-standard topology BLDC motor-based electric drives taking into account the stator pa-rameters asymmetry and the real phase back-EMF waveform. The specified features of the model allow exploring the operation of the designed electric drive, taking into account the BLDC motor and converter design. The model can be applied when checking atypical design decisions and when changing the set parameters of the electric drive and restrictions on working conditions and target functions to refine the control system algorithms and automate the search for optimal parameters of the motor and the semiconductor converter.


2019 ◽  
Vol 9 (19) ◽  
pp. 4158
Author(s):  
Zeng ◽  
Yuan ◽  
Wang

Selective catalytic reduction (SCR) is widely used to remove nitrogen oxides (NOx) in the flue gas of coal-fired power plants. The accumulation of ash particles inside the SCR-deNOx facility will increase the risk of catalyst deactivation or even damage. This paper presents the numerical and experimental investigations on the particle dispersal approach for the SCR-deNOx facility of a 1000 MW coal-fired power plant. The accumulation of different-sized particles is evaluated based on computational fluid dynamics (CFD) simulations. To prevent particles from accumulation, an optimized triangular deflector is proposed and attempts are made to find out the optimal installing position of the deflector. For the π-type SCR-deNOx facilities, the particle accumulation predominantly occurred on one side of the catalysts’ entrance, which corresponds to the inner side of the wedge-shaped turning. It is indicated that particles larger than 8.8 × 10−2 mm are responsible for the significant accumulation. The triangular deflector is proved to be an effective way to reduce particle accumulation and is found most efficient when it is installed at the high-speed area of the vertical duct. Flow model test (FMT) is carried out to validate the dispersal effect for the particle with relatively large sizes and the optimal installing position of the triangular deflector.


Sign in / Sign up

Export Citation Format

Share Document