High Performance and Cost Effective Recuperator for Micro-Gas Turbines

Author(s):  
Gunnar Lagerstro¨m ◽  
Max Xie

Rekuperator Svenska AB owned by VOLVO Technology Transfer Corporation and Avesta Polarit, has successfully developed a completely laser welded recuperator for micro-gas turbine applications. Tests have shown that the thermal performance is very competitive. The recuperator was installed in a 100 kW(e) micro-gas turbine power plant for combined electricity and heat generation by a customer. The recuperator is a primary surface counter flow heat exchanger with cross corrugated duct configuration. The primary heat transfer surface plate patterns are stamped and a pair of the plates are laser welded to form an air cell. The air cells are then stacked and laser welded together to form the recuperator core which is tied between two end beams. Manifolds for air inlet and outlet as well as piping system are welded to the core. Through varying the number of air cells the recuperator core can easily be adapted for micro-gas turbine applications with different output rates of electrical power. The key manufacturing technologies are stamping of the air cell plates and laser welding of the air cells. These processes can be fully automated for mass production at low costs.

Author(s):  
Bruce D. Thompson ◽  
John J. Hartranft ◽  
Dan Groghan

Abstract When the concept of aircraft derivative marine gas turbines were originally proposed, one of the selling points was the engine was going to be easy to remove and replace thereby minimizing the operational impact on the ship. Anticipated Mean Time Between Removal (MTBR) of these engines was expected to be approximately 3000 hours, due mostly to turbine corrosion damage. This drove the design and construction of elaborate removal routes into the engine intakes; the expected time to remove and replace the engine was expected to be less than five days. However, when the first USN gas turbine destroyers started operating, it was discovered that turbine corrosion damage was not the problem that drove engine maintenance. The issues that drove engine maintenance were the accessories, the compressor, combustors and engine vibration. Turbine corrosion was discovered to be a longer term affect. This was primarily due to the turbine blade and vane coatings used and intake air filtration. This paper discusses how engine design, tooling development, maintenance procedure development and engine design improvements all contributed to extending the MTBR of USN propulsion and electrical power generation gas turbines on the DD 963, CG 47, DDG 51 and FFG 7 classes to greater than 20,000 hours. The ability to remove the gas turbine rapidly or in most cases repair the engine in-place has given the USN great maintenance flexibility, been very cost effective and not impacted operational readiness.


Biomass fuel as carbon neutral, abundant, domestic, cost effective is being reconsidered to fuel-up the power plant to produce electricity in clean way. But utilization of biomass fuel directly in existing conventional power plant causes problem in turbine such as erosion, hot corrosion, clogging and depositions [1]. As such combustion of biomass fuel outside the primary cycle eradicates potential hazards for turbine. In such a case indirectly fired micro gas turbine opens a door to biomass fuel as this technology is free from negative aspects of direct combustion as well as making micro gas turbine feasible to generate electricity in small scale at non-grid areas for individual consumer or group of consumers. In this research, the effect of different types of biomass fuel on operating parameters as well as on output electrical power of externally fired micro gas turbine (EFmGT)has been analyzed. The biomass fuels are categorized on the basis of air to fuel ratio (AFR) using stoichiometry combustion theory. It is found from results that parameters like air mass flow rate, compression ratio, heat exchanger effectiveness, turbine inlet temperature, combustion temperature, and temperature difference in heat exchanger affect the performance of EFmGT. Also types of biomass fuel have substantial impacts on these performance parameters as well as on electrical power output of EFmGT cycle.


Author(s):  
Martina Hohloch ◽  
Jan Zanger ◽  
Axel Widenhorn ◽  
Manfred Aigner

For the development of efficient and fuel flexible decentralized power plant concepts a test rig based on the Turbec T100 micro gas turbine is operated at the DLR Institute of Combustion Technology. This paper reports the characterization of the transient operating performance of the micro gas turbine by selected transient maneuvers like start-up, load change and shut-down. The transient maneuvers can be affected by specifying either the electrical power output or the turbine speed. The impact of the two different operation strategies on the behavior of the engine is explained. At selected stationary load points the performance of the gas turbine components is characterized by using the measured thermodynamic and fluid dynamic quantities. In addition the impact of different turbine outlet temperatures on the performance of the gas turbine is worked out. The resulting data set can be used for validation of numerical simulation and as a base for further investigations on micro gas turbines.


Author(s):  
Julianne M. Klara ◽  
Michael S. Izsak ◽  
Michael R. Wherley

The next generation of coal-fueled power plants must be efficient, clean, and cost-effective. The U.S. Department of Energy (DOE) sponsors a program to develop an advanced, coal-based power system called HIPPS, or High Performance Power System, to meet these requirements. In the HIPPS cycle, air from a gas turbine compressor is indirectly heated in a coal-fueled furnace and then further heated directly with natural gas to power a gas turbine. Indirect heating of the gas turbine working fluid avoids the problems associated with expansion of a corrosive, coal-derived gas through a turbine. Steam is also generated to power a bottoming Rankine cycle. This paper presents an analysis of the performance of HIPPS that is achievable using current technology and projects the level of performance as technology advances. The HIPPS cycle using current technology produces electricity from coal at a thermal efficiency that is more than 40 percent higher than that of today’s average coal-based power plants. The effect of advanced gas turbines, a novel gas turbine cycle, high performance steam cycles, and advanced coal-fueled furnace materials/designs is estimated with the use of computer-based engineering tools. Promising system configurations for future generations of HIPPS are identified with cycle efficiencies as high as 49.3 percent on a higher heating value basis.


Author(s):  
Ian Timbrell ◽  
Steve Mason ◽  
Alan Green ◽  
Neil McCallum

Following the design shift in Naval ship architecture from conventional mechanical through hybrid to Integrated Electric Propulsion (IEP), the starting philosophy of prime movers needs to be rationalised so as to interact and augment the propulsion configuration and electrical distribution whilst remaining cost effective. To fulfil this requirement the UK Ministry of Defence contracted Ultra Electronics (PMES) to work in partnership to develop and demonstrate a gas turbine Electric Start and Generation System (ESGS). The undertaken programme is to demonstrate full control over the gas turbine starting system and associated maintenance features together with generating sufficient electrical power that can be used to supply all the gas turbine alternator auxiliaries. This paper will give an overview of such requirements together with the design of the basic system and the challenges to ‘navalise’ such a product and install it on a marine gas turbine. The paper will continue by reviewing data obtained from factory acceptance testing and on-engine testing with the Marine Trent MT-30. It is hoped to further compare and analyse these results with future planned testing scheduled in late 2005. Conclusions will be drawn from the initial results, the design of the proposed ESGS system and comparisons with existing in-service gas turbine start systems.


Author(s):  
Raffaela Calabria ◽  
Fabio Chiariello ◽  
Patrizio Massoli ◽  
Fabrizio Reale

In this study, research activity concerning the utilization of biogas into a commercial micro gas turbine (MGT) Ansaldo Turbec T100P is presented. The use of biogas in MGT has been already quite explored in literature. However, conflicting and not yet fully comprehensive results highlight the need for further scientific investigations. Although several authors have demonstrated, through numerical studies, the possibility of using biogas with amounts of CO2 up to 40–50% in volume in commercial MGT, experimental evidences of this condition are not yet present in literature. In fact, the CO2 concentration limit experimentally validated in literature, after which phenomena of detachment and instability of the flame happen, is considerably lower (∼12%). The utilization of biogas in micro gas turbines generally requires structural adaptations, often invasive and expensive, to the fuel compression unit and control valves. Not infrequently a partial redesign of the combustor is often necessary. Costs associated with the modifications significantly reduce the benefits of a rational and sustainable exploitation of energy resources of lower value as the biogas. Aim of this activity is to overcome these issues, by identifying a non-invasive and cost-effective technical solution to increase the CO2 concentration in the fuel and to extend the operation domain when low calorific value fuels are used. It has been studied, implemented and tested an innovative management strategy of fuel feeding and combustion. Experimental layout and preliminary results of this novel approach are shown and discussed.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


Sign in / Sign up

Export Citation Format

Share Document