scholarly journals Aerodynamic Performance and Turbulence Measurements in a Turbine Vane Cascade

Author(s):  
R. J. Boyle ◽  
B. L. Lucci ◽  
R. G. Senyitko

Turbine vane aerodynamics were measured in a three vane linear cascade. Surface pressures and blade row losses were obtained over a range of Reynolds and Mach numbers for three levels of turbulence. Comparisons are made with predictions using a quasi-3D Navier-Stokes analysis. Turbulence intensity measurements were made upstream and downstream of the vane. The purpose of the downstream measurements was to determine how the turbulence was affected by the strong contraction through 75° of turning.

Author(s):  
R. J. Boyle ◽  
R. G. Senyitko

The aerodynamic performance of a turbine vane was measured in a linear cascade. These measurements were conducted for exit-true chord Reynolds numbers between 150,000 and 1,800,000. The vane surface rms roughness-to-true chord ratio was approximately 2 × 10−4. Measurements were made for exit Mach numbers between 0.3 and 0.9 to achieve different loading distributions. Measurements were made at three different inlet turbulence levels. High and intermediate turbulence levels were generated using two different blown grids. The turbulence was low when no grid was present. The wide range of Reynolds numbers was chosen so that, at the lower Reynolds numbers the rough surfaces would be hydraulically smooth. The primary purpose of the tests was to provide data to verify CFD predictions of surface roughness effects on aerodynamic performance. Data comparisons are made using a two-dimensional Navier-Stokes analysis. Both two-equation and algebraic roughness turbulence models were used. A model is proposed to account for the increase in loss due to roughness as the Reynolds number increases.


Author(s):  
Brian L. Venable ◽  
Robert A. Delaney ◽  
Judy A. Busby ◽  
Roger L. Davis ◽  
Daniel J. Dorney ◽  
...  

A comprehensive study has been performed to determine the influence of vane-blade spacing on transonic turbine stage aerodynamics. In Part I of this paper, an investigation of the effect of turbine vane-blade interaction on the time-mean airfoil surface pressures and overall stage performance parameters is presented. Experimental data for an instrumented turbine stage are compared to two- and three-dimensional results from four different time-accurate Navier-Stokes solvers. Unsteady pressure data were taken for three vane-blade row spacings in a short-duration shock tunnel using surface-mounted, high-response pressure sensors located along the midspan of the airfoils. Results indicate that while the magnitude of the surface pressure unsteadiness on the vane and blade changes significantly with spacing, the time-mean pressures and performance numbers are not greatly affected.


1999 ◽  
Vol 121 (4) ◽  
pp. 663-672 ◽  
Author(s):  
B. L. Venable ◽  
R. A. Delaney ◽  
J. A. Busby ◽  
R. L. Davis ◽  
D. J. Dorney ◽  
...  

A comprehensive study has been performed to determine the influence of vane-blade spacing on transonic turbine stage aerodynamics. In Part I of this paper, an investigation of the effect of turbine vane–blade interaction on the time-mean airfoil surface pressures and overall stage performance parameters is presented. Experimental data for an instrumented turbine stage are compared to two- and three-dimensional results from four different time-accurate Navier–Stokes solvers. Unsteady pressure data were taken for three vane-blade row spacings in a short-duration shock tunnel using surface-mounted, high-response pressure sensors located along the midspan of the airfoils. Results indicate that while the magnitude of the surface pressure unsteadiness on the vane and blade changes significantly with spacing, the time-mean pressures and performance numbers are not greatly affected.


Author(s):  
R. J. Boyle ◽  
B. L. Lucci ◽  
V. G. Verhoff ◽  
W. P. Camperchioli ◽  
H. La

Midspan aerodynamic measurements for a three vane-four passage linear turbine vane cascade are given. The vane axial chord was 4.45cm. Surface pressures and loss coefficients were measured at exit Mach numbers of 0.3, 0.7, and 0.9. Reynolds number was varied by a factor of six at the two highest Mach numbers, and by a factor often at the lowest Mach number. Measurements were made with and without a turbulence grid. Inlet turbulence intensities were less than 1% and greater than 10%. Length scales were also measured. Pressurized air fed the test section, and exited to a low pressure exhaust system. Maximum inlet pressure was two atmospheres. The minimum inlet pressure for an exit Mach number of 0.9 was one-third of an atmosphere, and at a Mach number of 0.3, the minimum pressure was half this value. The purpose of the test was to provide data for verification of turbine vane aerodynamic analyses, especially at low Reynolds numbers. Predictions obtained using a Navier-Stokes analysis with an algebraic turbulence model are also given.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Author(s):  
Jeffrey Gibson ◽  
Karen Thole ◽  
Jesse Christophel ◽  
Curtis Memory

Rim seals in the turbine section of gas turbine engines aim to reduce the amount of purge air required to prevent the ingress of hot mainstream gas into the under-platform space. A stationary, linear cascade was designed, built, and benchmarked to study the effect of the interaction between the pressure fields from an upstream vane row and downstream blade row on hot gas ingress for engine-realistic rim seal geometries. The pressure field of the downstream blade row was modeled using a bluff body designed to produce the pressure distortion of a moving blade. Sealing effectiveness data for the baseline seal indicated that there was little to no ingress with a purge rate greater than 1% of the main gas path flow. Adiabatic endwall effectiveness data downstream in the trench between the vane and blade showed a high degree of mixing. Extending the seal feature associated with the vane endwall indicated better sealing than the baseline design. Steady computational predictions were found to overpredict the sealing effectiveness due to underpredicted mixing in the trench.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
F. P. P. Tan ◽  
N. B. Wood ◽  
G. Tabor ◽  
X. Y. Xu

In this study, two different turbulence methodologies are investigated to predict transitional flow in a 75% stenosed axisymmetric experimental arterial model and in a slightly modified version of the model with an eccentric stenosis. Large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) methods were applied; in the LES simulations eddy viscosity subgrid-scale models were employed (basic and dynamic Smagorinsky) while the RANS method involved the correlation-based transitional version of the hybrid k-ε/k-ω flow model. The RANS simulations used 410,000 and 820,000 element meshes for the axisymmetric and eccentric stenoses, respectively, with y+ less than 2 viscous wall units for the boundary elements, while the LES used 1,200,000 elements with y+ less than 1. Implicit filtering was used for LES, giving an overlap between the resolved and modeled eddies, ensuring accurate treatment of near wall turbulence structures. Flow analysis was carried out in terms of vorticity and eddy viscosity magnitudes, velocity, and turbulence intensity profiles and the results were compared both with established experimental data and with available direct numerical simulations (DNSs) from the literature. The simulation results demonstrated that the dynamic Smagorinsky LES and RANS transitional model predicted fairly comparable velocity and turbulence intensity profiles with the experimental data, although the dynamic Smagorinsky model gave the best overall agreement. The present study demonstrated the power of LES methods, although they were computationally more costly, and added further evidence of the promise of the RANS transition model used here, previously tested in pulsatile flow on a similar model. Both dynamic Smagorinsky LES and the RANS model captured the complex transition phenomena under physiological Reynolds numbers in steady flow, including separation and reattachment. In this respect, LES with dynamic Smagorinsky appeared more successful than DNS in replicating the axisymmetric experimental results, although inflow conditions, which are subject to caveats, may have differed. For the eccentric stenosis, LES with Smagorinsky coefficient of 0.13 gave the closest agreement with DNS despite the known shortcomings of fixed coefficients. The relaminarization as the flow escaped the influence of the stenosis was amply demonstrated in the simulations, graphically so in the case of LES.


1995 ◽  
Author(s):  
Meng-Hsuan Chung ◽  
Andrew M. Wo

The effect of blade row axial spacing on vortical and potential disturbances and gust response is studied for a compressor stator/rotor configuration near design and at high loadings using 2D incompressible Navier-Stokes and potential codes, both written for multistage calculations. First, vortical and potential disturbances downstream of the isolated stator in the moving frame are defined; these disturbances exclude blade row interaction effects. Then, vortical and potential disturbances for the stator/rotor configuration are calculated for axial gaps of 10%, 20%, and 30% chord. Results show that the potential disturbance is uncoupled; the potential disturbance calculated from the isolated stator configuration is a good approximation for that from the stator/rotor configuration for all three axial gaps. The vortical disturbance depends strongly on blade row interactions. Low order modes of vortical disturbance are of substantial magnitude and decay much more slowly downstream than do those of potential disturbance. Vortical disturbance decays linearly with increasing mode except very close to the stator trailing edge. For a small axial gap, lower order modes of both vortical and potential disturbances must be included to determine the rotor gust response.


Author(s):  
M. Stripf ◽  
A. Schulz ◽  
H.-J. Bauer ◽  
S. Wittig

Two extended models for the calculation of rough wall transitional boundary layers with heat transfer are presented. Both models comprise a new transition onset correlation, which accounts for the effects of roughness height and density, turbulence intensity and wall curvature. In the transition region, an intermittency equation suitable for rough wall boundary layers is used to blend between the laminar and fully turbulent state. Finally, two different submodels for the fully turbulent boundary layer complete the two models. In the first model, termed KS-TLK-T in this paper, a sand roughness approach from Durbin et al., which builds upon a two-layer k-ε-turbulence model, is used for this purpose. The second model, the so-called DEM-TLV-T model, makes use of the discrete-element roughness approach, which was recently combined with a two-layer k-ε-turbulence model by the present authors. The discrete element model will be formulated in a new way suitable for randomly rough topographies. Part I of the paper will provide detailed model formulations as well as a description of the database used for developing the new transition onset correlation. Part II contains a comprehensive validation of the two models, using a variety of test cases with transitional and fully turbulent boundary layers. The validation focuses on heat transfer calculations on both, the suction and the pressure side of modern turbine airfoils. Test cases include extensive experimental investigations on a high-pressure turbine vane with varying surface roughness and turbulence intensity, recently published by the current authors as well as new experimental data from a low-pressure turbine vane. In the majority of cases, the predictions from both models are in good agreement with the experimental data.


Author(s):  
T. Valkov ◽  
C. S. Tan

A computational approach, based on a spectral-element Navier-Stokes solver, has been applied to the study of the unsteady flow arising from wake-stator interaction. Direct, as well as turbulence-model calculations, provide insight into the mechanics of the unsteady flow and demonstrate the potential for controlling its effects. The results show that the interaction between the wakes and the stator blades produces a characteristic pattern of vortical disturbances, which have been correlated to the pressure fluctuations. Within the stator passage, the wakes migrate towards the pressure surface where they evolve into counter-rotating vortices. These vortices are the dominant source of disturbances over the pressure surface of the stator blade. Over the suction surface of the stator blade, the disturbances are due to the distortion and detachment of boundary layer fluid. They can be reduced by tailoring the blade loading or by applying non-uniform suction.


Sign in / Sign up

Export Citation Format

Share Document