Importance of Inlet Total Pressure Conditions in Evaluating Performance of Non-Symmetric Gas Turbine Exhaust Ducts

Author(s):  
M. H. Cunningham ◽  
A. M. Birk ◽  
W. Di Bartolomeo

When highly non-symmetric exhaust ducts are installed on a gas turbine engine, the asymmetries result in a non-uniform circumferential total pressure condition at the inlet of the duct. When testing these ducts experimentally or computationally the correct inlet conditions are often not known or cannot be reproduced. To study the sensitivity of duct performance to inlet conditions, an experimental and computational study of a non-symmetric gas turbine exhaust duct that includes a 160° turn with an annular to rectangular transition, has been carried out over a range of inlet conditions. The inlet conditions varied include circumferential total pressure profiles and swirl. The experimental studies have been carried out in cold flow with several non-uniform total pressure inlet conditions. Computational fluid dynamic (CFD) techniques validated against the experimental results, have been used to extend the range of inlet conditions beyond the range that could be obtained experimentally to those typical of an engine installation. Results show that the total pressure inlet conditions have a significant effect on the flow structure in the exhaust duct and that the performance of the exhaust duct degrades as the level of circumferential non-uniformities increase. However, trends in geometric optimization identified experimentally using cold flow and uniform total pressure inlet conditions are confirmed computationally with circumferential non-uniformities typical of actual engine operations. This suggests that although inlet conditions are important for determining the level of performance, the configuration of the optimized geometry is somewhat independent of the inlet conditions.

Author(s):  
Steven Farber ◽  
Wahid Ghaly

In typical gas turbine applications, combustion gases that are discharged from the turbine are exhausted into the atmosphere in a direction that is sometimes different from that of the inlet. In such cases, the design of efficient exhaust ducts is a challenging task particularly when the exhaust gases are also swirling. A parametric Computational Fluid Dynamics (CFD) based study was carried out on non-symmetric gas turbine exhaust ducts where the effects of geometry and inlet aerodynamic conditions were examined. These exhaust ducts comprise an annular inlet, a flow splitter, an annular to rectangular transition region, and an exhaust stub. The duct geometry, which is a three-dimensional complex one, is approximated with a six-parameter model (four geometric and two aerodynamic), which was coupled with a design of experiment method to generate a relatively small number of exhaust ducts. The flow in these ducts was simulated using CFD for different values of inlet swirl and aerodynamic blockage and the numerical results were reviewed so as to assess the effects of the geometric and aerodynamic parameters on the total pressure loss in the exhaust duct. These flow simulations were used as a data base to generate a total pressure loss model that designers can use as a tool to build more efficient non-symmetric gas turbine exhaust ducts.


Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


1968 ◽  
Vol 90 (3) ◽  
pp. 265-270 ◽  
Author(s):  
C. G. Ringwall ◽  
L. R. Kelley

Circuit concepts and test data for a fluidic system to sense the average temperature in a gas turbine exhaust duct are presented. Phase discrimination techniques are used to sense the average wave velocity in a long tube and to produce an output pressure differential proportional to temperature error.


1971 ◽  
Vol 93 (1) ◽  
pp. 57-61 ◽  
Author(s):  
William J. Kelnhofer ◽  
Charles T. Derick

Straight-walled diffuser-tailpipe systems with fully developed inlet conditions as encountered with gas turbine exhaust ducting systems have been tested. For constant length diffusers with varying tailpipe lengths, an increase in recovery and a slight increase in area ratio occurs at maximum performance condition. Test conditions included ratios of diffuser wall length to diffuser inlet width from 5.33 to 15.33. Maximum ratio of tailpipe length to diffuser inlet width was 10.47.


Author(s):  
Shaorong Zhou ◽  
Zhaohui Du ◽  
Hanping Chen ◽  
Fangyuan Zhong

The flow and thermal fields within the cooling air injection device which is widely used to suppress the infrared (IR) signatures of a marine gas turbine exhaust system were studied numerically and experimentally. A turbulence near-wall model based on the wall function method was adopted. The discretization equations were derived for the control volumes when conjugate heat transfer exists at their interfaces, with the radiation heat flux at the interfaces appearing as an additional source term. The solution method of entrained velocities at the entrance of secondary flow was introduced. The distributions of temperature and static pressure on the diffuser surface, and the temperature of gas at the outlet of the exhaust duct were simulated numerically. The numerical calculated results agreed well with corresponding scale model experimental data. Lastly, the measured IR radiation distributions by scale model experiments at different view angles and various engine power settings, with and without IR signature suppression (IRSS) devices were presented.


2021 ◽  
Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


Author(s):  
Michal P. Siorek ◽  
Stephen Guillot ◽  
Song Xue ◽  
Wing F. Ng

This paper describes studies completed using a quarter-scaled rig to assess the impact of turbine exit swirl angle and strut stagger on a turbine exhaust system consisting of an integral diffuser-collector. Advanced testing methods were applied to ascertain exhaust performance for a range of inlet conditions aerodynamically matched to flow exiting an industrial gas turbine. Flow visualization techniques along with complementary Computational Fluid Dynamics (CFD) predictions were used to study flow behavior along the diffuser endwalls. Complimentary CFD analysis was also completed with the aim to ascertain the performance prediction capability of modern day analytical tools for design phase and off-design analysis. The K-Epsilon model adequately captured the relevant flow features within both the diffuser and collector, and the model accurately predicted the recovery at design conditions. At off-design conditions, the recovery predictions were found to be pessimistic. The integral diffuser-collector exhaust accommodated a significant amount of inlet swirl without a degradation in performance, so long as the inlet flow direction did not significantly deviate from the strut stagger angle. Strut incidence at the hub was directly correlated with reduction in overall performance, whereas the diffuser-collector performance was not significantly impacted by strut incidence at the shroud.


1970 ◽  
Author(s):  
P. J. Torpey ◽  
R. M. Welch

The ability to predict the longitudinal temperature distribution along a gas turbine exhaust duct facilitates the selection of the proper duct material and the appropriate paint or other external coating. It also allows accurate determination of thermal expansion over the entire length. A first-order differential equation is derived from a one-dimensional heat flow model for the exhaust system. A digital computer program employing this model is also presented. The computer solution, in addition to eliminating tedious manual computation, extends the analysis capability by accounting for changes in temperature and flow-dependent variables along the duct length. Measured gas and duct wall temperatures for a 1.5-kw gas turbine exhaust system are compared with values predicted by the analysis. Good agreement is noted throughout that portion of the system in which fully developed flow exists.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Michal P. Siorek ◽  
Stephen Guillot ◽  
Song Xue ◽  
Wing F. Ng

This paper describes studies completed using a quarter-scaled rig to assess the impact of turbine exit swirl angle and strut stagger on a turbine exhaust system consisting of an integral diffuser-collector. Advanced testing methods were applied to ascertain exhaust performance for a range of inlet conditions aerodynamically matched to flow exiting an industrial gas turbine. Flow visualization techniques along with complementary computational fluid dynamics (CFD) predictions were used to study flow behavior along the diffuser end walls. Complimentary CFD analysis was also completed with the aim to ascertain the performance prediction capability of modern day analytical tools for design phase and off-design analysis. The K-Epsilon model adequately captured the relevant flow features within both the diffuser and collector, and the model accurately predicted the recovery at design conditions. At off-design conditions, the recovery predictions were found to be pessimistic. The integral diffuser-collector exhaust accommodated a significant amount of inlet swirl without degradation in performance, so long as the inlet flow direction did not significantly deviate from the strut stagger angle. Strut incidence at the hub was directly correlated with reduction in overall performance, whereas the diffuser-collector performance was not significantly impacted by strut incidence at the shroud.


Author(s):  
Michel D. Ninacs ◽  
Rodney P. Bell

This paper discusses the methods used to derive an improved design for gas turbine exhaust duct expansion joints. Typically these joints are subjected to very rapid increase in internal exhaust gas temperatures that result in large temperature differentials within the joint structures. The thermal gradients can cause stress levels in excess of yield and when the turbine is used intermittently, such as peaking power units would be, the net result is crack propagation and gas leakage.


Sign in / Sign up

Export Citation Format

Share Document