Surge Margin Tracking for Active Control of Quick Windmill Relighting

Author(s):  
Sog-Kyun Kim ◽  
Ian A. Griffin ◽  
Haydn A. Thompson ◽  
Peter J. Fleming

Surge margin tracking logic is developed for use in the control of quick windmill relighting (QWR) at sub-idle. Using existing high pressure compressor (HPC) characteristics (but without any gas turbine engine model), the surge margin can be calculated and used to approximate the air flow which is currently not measured in flight. During the QWR flight test, only limited measurements excluding the airflow measurement are available. Based on the fact that a beta value is equivalent to the position of the throttle valve in a compressor test rig, the role of the beta value is here to interrelate between the PRC (pressure ratio of compressor) and NDMF (non-dimensional mass flow) values for the measured CNH (corrected high pressure spool speed) and PRC values. Using the proposed scaling factors (SFs), the HPC map in terms of PRC is adaptively scaled with the engine parameters to cover the operating pressure ratio of the HPC. These account qualitatively for the effects of heat soakage and stability aids such as bleed and VSV (variable stator vane) on the compressor map. The simulation results show that the variable SF approach is more realistic in estimation of the surge margin, compared to the fixed SF approach. As a result of this proposed surge margin tracking logic, an active control for QWR may be possible using an estimated surge margin to adjust the fuel flow. This improves the pull-away time to reach idle power without danger of stall or surge during QWR.

Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
Senthil Krishnababu ◽  
Vili Panov ◽  
Simon Jackson ◽  
Andrew Dawson

Abstract In this paper, research that was carried out to optimise an initial variable guide vane schedule of a high-pressure ratio, multistage axial compressor is reported. The research was carried out on an extensively instrumented scaled compressor rig. The compressor rig tests carried out employing the initial schedule identified regions in the low speed area of the compressor map that developed rotating stall. Rotating stall regions that caused undesirable non-synchronous vibration of rotor blades were identified. The variable guide vane schedule optimisation carried out balancing the aerodynamic, aero-mechanical and blade dynamic characteristics gave the ‘Silent Start’ variable guide vane schedule, that prevented the development of rotating stall in the start regime and removed the non-synchronous vibration. Aerodynamic performance and aero-mechanical characteristics of the compressor when operated with the initial schedule and the optimised ‘Silent Start’ schedule are compared. The compressor with the ‘Silent Start’ variable guide vane schedule when used on a twin shaft engine reduced the start time to minimum load by a factor of four and significantly improved the operability of the engine compared to when the initial schedule was used.


Author(s):  
Pontus Eriksson ◽  
Magnus Genrup ◽  
Klas Jonshagen ◽  
Jens Klingmann

Gas turbine systems are predominantly designed to be fuelled with gaseous fuels within a limited Wobbe index range (typically HHV = 45–55 MJ/Nm3 or 1200–1480 Btu/scf). When low calorific fuel gases are fired, the engine will be forced to operate outside its design envelope. The added mass flow will typically raise the cycle pressure ratio and in two-shaft designs also raise the gas generator shaft speed. Typical constraints to be considered due to the altered fuel composition are pressure loads, shaft torques, shaft overspeeds, centrifugal overloading of disks and blades, combustor flameout, surge and flutter limits for the turbomachinery. This poses limitations to usable fuel choices. In this study, the response of a natural gas fired simple cycle two-shaft gas turbine is investigated. A lean premixed combustor is also included in the model. Emphasis has been put on predicting the turbomachinery and combustor behavior as different amounts of N2 or CO2 are added to the fuel path. These two inerts are typically found in large quantities in medium and low calorific fuels. The fuels lower heating value is thus gradually changed from 50 MJ/kg (21.5 kBtu/lb) to 5MJ/kg (2.15 kBtu/lb). A model, based on the Volvo Aero Corp. VT4400 gas turbine (originally Dresser Rand DR990) characterized by one compressor and two expander maps is considered. The free turbine is operated at fixed physical speed. The operating point is plotted in the compressor map and the turbine maps at three distinct firing temperatures representing turndown from full load to bleed opening point. Gas generator speed and shaft power are shown. Surge margin and power turbine power is plotted. Overall efficiency is computed. The behavior of the Volvo lean premixed combustor is also discussed. Air split, primary zone equivalence ratio and temperature is plotted. Combustor loading, combustion intensity and pressure drop is graphed. Results are, as far as possible, given as non-dimensional parameter groups for easy comparison with other machines.


Author(s):  
C. Xu ◽  
R. S. Amano

An unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and a large surge margin flow coefficient of 0.145 centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design demonstrated to be successful to extend the low solidarity diffusers to high-pressure ratio compressor. The design performance range showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The experimental results showed that the test results are in good agreement with the design.


2021 ◽  
Author(s):  
Marek Orkisz ◽  
Karolina Pazura

Currently aviation focuses mainlly on increasing the economy and ecology of engines. Production of NOx, CO2 and SO adversaly impacts the environment. Parallel goal to minimize SFC to achieve both lower: emission and mission costs. The optimization of components is thus very important. One of the ways of optimizing cycle is doing that based on compressor maps. However it is very expensive to plot one since experimental work needs to be done. The aim of this article is to present a methodology of creating compressor map based on ENGINE ANALOGY. There was used the virtual bench WESTT CS/BV for tests to receive pressure ratio and mass flow of DGEN 380 for three different values of flight speed and altitude, while the rotational speed was changed. The construction similarity of CFM 56-5B and APS 3200 gives the opportunity to plotted compressor maps using the engine analogy without the need for an experiment or using the virtual bench.


Author(s):  
M. D. Barringer ◽  
K. A. Thole ◽  
M. D. Polanka

Within a gas turbine engine, the high pressure turbine vanes are subjected to very harsh conditions from the highly turbulent and hot gases exiting the combustor. The temperature and pressure fields exiting the combustor dictate the heat transfer and aero losses that occur in the turbine passages. To better understand these effects, the goal of this work is to develop an adjustable combustor exit profile simulator for the Turbine Research Facility (TRF) at the Air Force Research Laboratory (AFRL). The TRF is a high temperature, high pressure, short duration blow-down test facility that is capable of matching several aerodynamic and thermal non-dimensional engine parameters including Reynolds number, Mach number, pressure ratio, corrected mass flow, gas-to-metal temperature ratio, and corrected speed. The research objective was to design, install, and verify a non-reacting simulator device that provides representative combustor exit total pressure and temperature profiles to the inlet of the TRF turbine test section. This required the upstream section of the facility to be redesigned into multiple concentric annuli that serve the purpose of injecting high momentum dilution jets and low momentum film cooling jets into a central annular chamber, similar to a turbine engine combustor. The design of the simulator allows for variations in injection levels to generate turbulence and pressure profiles. It also can vary the dilution and film cooling temperatures to create a variety of temperature profiles consistent with real combustors. To date, the design and construction of the simulator device has been completed. All of the hardware has been trial fitted and the flow control shutter systems have been successfully installed and tested. Currently, verification testing is being performed to investigate the impact of the generated temperature, pressure, and turbulence profiles on turbine heat transfer and secondary flow development.


Author(s):  
Peter L. Meitner ◽  
Anthony L. Laganelli ◽  
Paul F. Senick ◽  
William E. Lear

A semi-closed cycle, turboshaft gas turbine engine was assembled and tested under a cooperative program funded by the NASA Glenn Research Center with support from the U.S. Army. The engine, called HPRTE (High Pressure, Recuperated Turbine Engine), features two distinct cycles operating in parallel; an “inner,” high pressure, recuperated cycle, in which exhaust gas is recirculated, and an “open” through-flow cycle. Recuperation is performed in the “inner,” high pressure loop, which greatly reduces the size of the heat exchanger. An intercooler is used to cool both the recirculated exhaust gas and the fresh inlet air. Because a large portion of the exhaust gas is recirculated, significantly less inlet air is required to produce a desired horsepower level. This reduces the engine inlet and exhaust flows to less than half that required for conventional, open cycle, recuperated gas turbines of equal power. In addition, the reburning of the exhaust gas reduces exhaust pollutants. A two-shaft engine was assembled from existing components to demonstrate concept feasibility. The engine did not represent an optimized system, since most components were oversized, and the overall pressure ratio was much lower than optimum. New cycle analysis codes were developed that are capable of accounting for recirculating exhaust flow. Code predictions agreed with test results. Analyses for a fully developed engine predict almost constant specific fuel consumption over a broad power range. Test results showed significant emissions reductions. This document is the first in a series of papers that arc planned to be presented on semi-closed cycle characteristics, issues, and applications, addressing the impact of recirculating exhaust flow on combustion and engine components.


Sign in / Sign up

Export Citation Format

Share Document