Comparative Investigation of Various Humidified Gas Turbine Cycles

Author(s):  
M. Yari ◽  
K. Sarabchi

Various advanced gas turbine cycles have been proposed to compete with combined cycles. One of the promising cycles is humid air turbine cycle. The latest configuration proposed for this cycle is known as part flow evaporative gas turbine cycle (PEvGT) in which humidification is combined with steam injection. Having advantages of both steam injected and humid air cycles, it is regarded as a very desirable plant for future. The objectives of this paper are: Development of a comprehensive model for analysis of PEvGT cycle in order to predict its performance parameters depending on different design conditions. It should be noted that the model validated with available data in literature. Comparing the performance of PEvGT cycle with full flow evaporative gas turbine cycle (FEvGT) and stand alone steam injected gas turbine cycle (STIG). Based on a computer code developed for this research, a parametric analysis was carried out for the above-mentioned cycles for a wide range of pressure ratio and turbine inlet temperature variations. The obtained results show that the specific net work of PEvGT cycle, for given conditions, is higher than for both FEvGT and STIG cycles. On the other hand, the efficiency of PEvGT is higher than STIG but is slightly lower than FEvGT cycle.

Author(s):  
Mortaza Yari

The evaporative gas turbine cycle is a new high-efficiency power cycle that has reached the pilot plant testing stage. The latest configuration proposed for this cycle is known as part flow evaporative gas turbine cycle (PEvGT) in which humidification is combined with steam injection. Having advantages of both steam injected and humid air cycles, it is regarded as a very desirable plant for future. The aim of this work is to investigate the economic performance of the PEvGT cycles: PEvGT and PEvGT-IC (Intercooled PEvGT cycle), based on the thermoeconomic analysis. The results are presented and the influence of the several parameters is discussed: pressure ratio, part-flow humidification rate and the cycle configuration. Also the thermoeconomic optimization of the cycles have been done and discussed.


Author(s):  
S. S. Stecco ◽  
U. Desideri ◽  
B. Facchini ◽  
N. Bettagli

The humid air cycle (Rao, 1990), recently proposed, is an intercooled gas turbine cycle, having an air-water mixing evaporator before the combustion chamber, and a recovering system for exhaust gases. The solution appears to have several advantages: increase in efficiency, increase in power output, reduction of NOx. These important effects are similar to those encountered in STIG (STeam Injection Gas turbine) or CHENG (Saad and Cheng, 1992) power plants, however the particular non-isothermal vaporisation here considered enhances the efficiency increase. Considering a TIT (Turbine Inlet Temperature) at 1273 K and combustion with methane, three different plant solutions are considered, where modifications are related to water circuit, to determine the most important parameters affecting the cycle’s performances. The results show the advantage of employing a dry cooling tower to lower the recirculating water temperature or the total mass flow coming from evaporator. Both cases result in a lower exhaust gases temperature. The advantages and comebacks of the three cycles are taken into consideration and discussed in detail, selecting a possible optimised plant solution. The paper emphasises also the practical feasibility of this plant.


1978 ◽  
Vol 100 (4) ◽  
pp. 640-646 ◽  
Author(s):  
P. Donovan ◽  
T. Cackette

A set of factors which reduces the variability due to ambient conditions of the hydrocarbon, carbon monoxide, and oxides of nitrogen emission indices has been developed. These factors can be used to correct an emission index to reference day ambient conditions. The correction factors, which vary with engine rated pressure ratio for NOx and idle pressure ratio for HC and CO, can be applied to a wide range of current technology gas turbine engines. The factors are a function of only the combustor inlet temperature and ambient humidity.


Author(s):  
K. Sarabchi ◽  
A. Ansari

Cogeneration is a simultaneous production of heat and electricity in a single plant using the same primary energy. Usage of a cogeneration system leads to fuel energy saving as well as air pollution reduction. A gas turbine cogeneration plant (GTCP) has found many applications in industries and institutions. Although fuel cost is usually reduced in a cogeneration system but the selection of a system for a given site optimally involves detailed thermodynamic and economical investigations. In this paper the performance of a GTCP was investigated and an approach was developed to determine the optimum size of the plant to meet the electricity and heat demands of a given site. A computer code, based on this approach, was developed and it can also be used to examine the effect of key parameters like pressure ratio, turbine inlet temperature, utilization period, and fuel cost on the economics of GTCP.


Author(s):  
Anoop Kumar Shukla ◽  
Onkar Singh

Gas/steam combined cycle power plants are extensively used for power generation across the world. Today’s power plant operators are persistently requesting enhancement in performance. As a result, the rigour of thermodynamic design and optimization has grown tremendously. To enhance the gas turbine thermal efficiency and specific power output, the research and development work has centered on improving firing temperature, cycle pressure ratio, adopting improved component design, cooling and combustion technologies, and advanced materials and employing integrated system (e.g. combined cycles, intercooling, recuperation, reheat, chemical recuperation). In this paper a study is conducted for combining three systems namely inlet fogging, steam injection in combustor, and film cooling of gas turbine blade for performance enhancement of gas/steam combined cycle power plant. The evaluation of the integrated effect of inlet fogging, steam injection and film cooling on the gas turbine cycle performance is undertaken here. Study involves thermodynamic modeling of gas/steam combined cycle system based on the first law of thermodynamics. The results obtained based on modeling have been presented and analyzed through graphical depiction of variations in efficiency, specific work output, cycle pressure ratio, inlet air temperature & density variation, turbine inlet temperature, specific fuel consumption etc.


Author(s):  
Abdallah Bouam ◽  
Slimane Aissani ◽  
Rabah Kadi

The gas turbines are generally used for large scale power generation. The basic gas turbine cycle has low thermal efficiency, which decreases in the hard climatic conditions of operation, so the cycles with thermodynamic improvement is found to be necessary. Among several methods shown their success in increasing the performances, the steam injected gas turbine cycle (STIG) consists of introducing a high amount of steam at various points in the cycle. The main purpose of the present work is to improve the principal characteristics of gas turbine used under hard condition of temperature in Algerian Sahara by injecting steam in the combustion chamber. The suggested method has been studied and compared to a simple cycle. Efficiency, however, is held constant when the ambient temperature increases from ISO conditions to 50°C. Computer program has been developed for various gas turbine processes including the effects of ambient temperature, pressure ratio, injection parameters, standard temperature, and combustion chamber temperature with and without steam injection. Data from the performance testing of an industrial gas turbine, computer model, and theoretical study are used to check the validity of the proposed model. The comparison of the predicted results to the test data is in good agreement. Starting from the advantages, we recommend the use of this method in the industry of hydrocarbons. This study can be contributed for experimental tests.


Author(s):  
R. Bhargava ◽  
A. Peretto

In the present paper, a comprehensive methodology for the thermo-economic performance optimization of an intercooled reheat (ICRH) gas turbine with recuperation for cogenerative applications has been presented covering a wide range of power-to-heat ratio values achievable. To show relative changes in the thermo-economic performance for the recuperated ICRH gas turbine cycle, results for ICRH, recuperated Brayton and simple Brayton cycles are also included in the paper. For the three load cases investigated, the recuperated ICRH gas turbine cycle provides the highest values of electric efficiency and Energy Saving Index for the cogenerative systems requiring low thermal loads (high power-to-heat ratio) compared to the other cycles. Also, this study showed, in general, that the recuperated ICRH cycle permits wider power-to-heat ratio range compared to the other cycles and for different load cases examined, a beneficial thermodynamic characteristic for the cogeneration applications. Furthermore, this study clearly shows that implementation of the recuperated ICRH cycle in a cogeneration system will permit to design a gas turbine which has the high specific work capacity and high electric efficiency at low value of the overall cycle pressure ratio compared to the other cycles studied. Economic performance of the investigated gas turbine cycles have been found dependent on the power-to-heat ratio value and the selected cost structure (fuel cost, electric sale price, steam sale price etc.), the results for a selected cost structure in the study are discussed in this paper.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


2016 ◽  
Vol 5 (2) ◽  
pp. 25-44
Author(s):  
Saria Abed ◽  
Taher Khir ◽  
Ammar Ben Brahim

In this paper, thermodynamic study of simple and regenerative gas turbine cycles is exhibited. Firstly, thermodynamic models for both cycles are defined; thermal efficiencies of both cycles are determined, the overall heat transfer coefficient through the heat exchanger is calculated in order to determinate its performances and parametric study is carried out to investigate the effects of compressor inlet temperature, turbine inlet temperature and compressor pressure ratio on the parameters that measure cycles' performance. Subsequently, numerical optimization is established through EES software to determinate operating conditions. The results of parametric study have shown a significant impact of operating parameters on the performance of the cycle. According to this study, the regeneration technique improves the thermal efficiency by 10%. The studied regenerator has an important effectiveness (˜ 82%) which improves the heat transfer exchange; also a high compressor pressure ratio and an important combustion temperature can increase thermal efficiency.


Author(s):  
R. Yadav ◽  
Pradeep Kumar ◽  
Samir Saraswati

This paper presents a comparative study of first and second law thermodynamic analysis of combined and recuperated and non-recuperated steam injected gas turbine cycles. The analysis has been carried out by developing a computer code, which is based on the modeling of various elements of these cycles. The gas turbine chosen for the analysis is MS9001H developed recently by GE and the steam cycle is having a triple-pressure heat recovery steam generator with reheat. It has been observed that the combined cycle is superior to the steam injected cycle, however, the gap narrows down with increasing compressor pressure ratio and high value of turbine inlet temperature. The detailed exergy losses have been presented in various elements of combined and steam injected cycles.


Sign in / Sign up

Export Citation Format

Share Document