Numerical Study of the Internal Flow Field Characteristics in Mixed Flow Turbines

Author(s):  
D. Palfreyman ◽  
R. F. Martinez-Botas

Presented is a numerical investigation of the characteristics of the internal flow field of a high-speed low-pressure ratio mixed flow turbine of 95.14 mm tip diameter. A commercial computational fluid dynamics (CFD) code has been successfully employed. This has been carefully validated to experimental data taken from a turbine test facility at this institution. A comparison to gated (in phase with the turbine rotation) Laser Doppler Velocimetry measurements at the turbine trailing edge and total to static efficiencies at various operating conditions, was made showing good agreement. Details of the internal flow field from a numerical study using a 393,872 cell density model are presented. These details have been compared to a radial turbine of similar geometry and performance characteristics, also analyzed using the same cell density and analysis and boundary conditions. The flow field was found to be highly three-dimensional with the tip leakage vortex as the dominant secondary flow feature. The tip clearance flow was found to be significantly influenced by the relative motion of the shroud wall, which suppressed the development of a vortex within the mainstream passage particularly in the inducer region. Comparison to the radial turbine has shown noticeable differences concentrated in the inducer region where the greater Coriolis acceleration in the radial turbine is more influential in the development of secondary flows. Considerable loss is observed localized at the blade leading edge tip region along the full length of the blade pitch; this is associated with the increased streamline curvature in the meridional plane.

2021 ◽  
Author(s):  
Hemant Kumar ◽  
Chetan S. Mistry

Abstract A surge in the small jet engine market due to aero-propulsion purposes generates a requirement to develop compact and robust high-performance compressors. Mixed flow compressors can provide a comparatively higher pressure ratio compared to axial compressors and have less frontal area than centrifugal compressors. Rapid progress in manufacturing and computational capabilities has resulted in the successful design of mixed flow compressors in recent decades. In the present study, the mixed flow compressor was designed to operate at 3,000 rpm with a small total-to-total pressure ratio of 1.03 and a mass flow rate = 1.98 kg/s to carry at low-speed testing for university-level research. Meanline design for the compressor with air as working fluid was done. The blade geometry was developed using commercial Ansys® Bladegen module. The flow domain mesh was generated by the TurboGrid module. Ansys CFX was used as a solver and post-processing tool for the present numerical study. The present work describes the detailed design procedure, overall performance, and flow field features of a low-speed mixed-flow compressor with the special requirement of axial flow exit. The parametric analysis was carried out on splitter blade placement, wrap angle (10°, 20°, 30°, and 50°), and exit cone angle (30°, 40°, 50°, 60°, and 65°), at constant tip clearance and keeping the other parameters constant to observe their effect on performance and flow structure. The use of splitter blades smoothen the flow structure along both stream-wise and span-wise direction, which minimizes flow the separation issue and thereby helping in extending the overall operating range. Comparing the flow field characteristic and performance of each parametric variable, the optimum range of design values is exhibited. The numerical observation and analysis done on parametric variations in this paper can be used for the design of such a future low-speed mixed flow compressor for different performance expectations and installation requirements.


1994 ◽  
Author(s):  
D. Muthuvel Murugan ◽  
Widen Tabakoff ◽  
Awatef Hamed

Detailed flow investigation in the downstream region of a radial inflow turbine has been performed using a three component Laser Doppler Velocimetry. The flow velocities are measured in the exit region of the turbine at off-design operating conditions. The results are presented as contour and vector plots of mean velocities, flow angles and turbulent stresses. The measured parameters are correlated to the rotor blade rotation to observe any periodic nature of the flow. The measurements reveal a complex flow pattern near the tip region at the rotor exit due to the interaction of the tip clearance flow. The degree of swirl of the flow near the tip region at the rotor exit is observed to be high due to the gross under turning of the flow near the tip region. The effect of the rotor on the exit flow field is observed in the proximity of the rotor exit.


Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Abstract The numerical study is performed by means of an in-house CFD code to investigate the effect of circumferential nonuniform tip clearance due to the casing ovalization on flow field and performance of a turbine stage. A method called fast-moving mesh is used to synchronize the non-circular computational domain with the rotation of the rotor row. Four different layouts of the circumferential nonuniform clearance are calculated and evaluated in this paper. The results show that, the circumferential nonuniform clearance could reduce the aerodynamic performance of the turbine. When the circumferential nonuniformity δ reaches 0.4, the aerodynamic efficiency decreases by 0.58 percentage points. Through the analysis of the flow field, it is found that the casing ovalization leads to the difference of the size of the tip clearance in the circumferential direction, and the aerodynamic loss of the position of large tip clearance is greater than that of small tip clearance, which is related to the scale of leakage vortex. In addition, the flow field will become nonuniform in the circumferential direction, especially at the rotor exit, which will adversely affect the downstream flow field.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Ramesh Agarwal

This paper investigates the influence of different tip clearances on the transient characteristics of mixed-flow pump under stall condition. The instantaneous internal flow fields of mixed-flow pump with four tip clearances (0.2 mm, 0.5 mm, 0.8 mm and 1.1 mm) are explored by conducting unsteady time accurate simulations. Reynolds-averaged Navier-Stokes (RANS) equations are employed in the simulations and the results of computations are compared with experimental data. The results show that the pump head decreases by 22.1% and the pump efficiency drops by 13.9% at design flow condition when the impeller tip clearance increases from 0.2 mm to 1.1 mm. The swirling flow occurs in the inlet pipe of the mixed-flow pump with different tip clearances under stall condition, and the initial starting point of the swirling flow gets further away from the impeller inlet with increase in tip clearance because of increase in circumferential velocity and change in momentum of the tip leakage flow (TLF). The high turbulent eddy dissipation (TED) regions in the flow are attributed to the TLF, swirling flow, back flow and stall vortex, and their intensity are affected by the change in tip clearance. The oscillating trend of time domain distribution of TED enhances first and then decreases with increase in tip clearance and it exhibits a propagation feature under the effect of stall vortex, while most of the energy in the frequency domain remains concentrated in the low frequency part under stall condition.


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi

In order to investigate the effect of impeller tip clearance on internal flow fields and the rotating stall inception impacted by tip leakage vortex and inlet unsteady flow in a mixed-flow pump, mixed-flow pump models with tip clearances of 0.5 mm, 0.8 mm, and 1.1 mm were numerically calculated, and then the energy performance curves and internal flow structures were obtained and compared. The results show that the pump efficiency and the internal flow fields of numerical calculation are in good agreement with experimental results at design flow rate and near-stall condition. A portion of the positive slope segment appears in the energy performance curves under different tip clearances. The lowest head of the mixed-flow pump in the positive slope region decreases with the increase of the tip clearance while the highest head shows an opposite situation indicating that mixed-flow pumps are easier to stall under small tip clearance. At the design flow rate condition, the tip leakage vortex is relatively stable under different tip clearances and appears as a “snail shell” shape, whereas in rotating stall conditions, the “snail shell” shape disappear and the tip leakage flow on blade front forms a “flat” vortex structure. The inlet swirl flow not only affects the tip leakage flow in rotating stall conditions under different tip clearances, but also blocks the fluid from the inlet pipe. Under the circumstance of the same tip clearance, the main frequency amplitude of pressure pulsation coefficient gradually shifts away from blade passing frequency (96.67 Hz) to the axial frequency (24.17 Hz) when the pump operates in the stall condition.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


Author(s):  
Ilias Bosdas ◽  
Michel Mansour ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari ◽  
Shigeki Senoo

Modern steam turbines need to operate efficiently and safely over a wide range of operating conditions. This paper presents a unique unprecedented set of time-resolved steam flowfield measurements from the exit of the last two stages of a low pressure (LP) steam turbine under various volumetric massflow conditions. The measurements were performed in the steam turbine test facility in Hitachi city in Japan. A newly developed fast response probe equipped with a heated tip to operate in wet steam flows was used. The probe tip is heated through an active control system using a miniature high-power cartridge heater developed in-house. Three different operating points, including two reduced massflow conditions, are compared and a detailed analysis of the unsteady flow structures under various blade loads and wetness mass fractions is presented. The measurements show that at the exit of the second to last stage the flow field is highly three dimensional. The measurements also show that the secondary flow structures at the tip region (shroud leakage and tip passage vortices) are the predominant sources of unsteadiness at 85% span. The high massflow operating condition exhibits the highest level of periodical total pressure fluctuation compared to the reduced massflow conditions at the inlet of the last stage. In contrast at the exit of the last stage, the reduced massflow operating condition exhibits the largest aerodynamic losses near the tip. This is due to the onset of the ventilation process at the exit of the LP steam turbine. This phenomenon results in 3 times larger levels of relative total pressure unsteadiness at 93% span, compared to the high massflow condition. This implies that at low volumetric flow conditions the blades will be subjected to higher dynamic load fluctuations at the tip region.


Author(s):  
D. Ramesh Rajakumar ◽  
S. Ramamurthy ◽  
M. Govardhan

Experimental Investigations are carried out to study the effect of tip clearance flow in a mixed flow compressor stage. Two configurations, namely; constant and variable clearance gaps between impeller and stationary shroud are considered. For the purpose of the present investigations, a mixed flow compressor stage is designed and fabricated. The flow investigations were carried out in a closed circuit compressor rig. Detailed steady and unsteady measurements were carried out for three clearance gaps, namely; 0.5 mm, 0.75 mm, 0.9 mm. From the experimental investigations it is shown that constant tip clearance configurations show better performance in terms of pressure ratio and efficiency compared to variable clearance configurations. For a given configuration the pressure ratio and efficiency of the stage decrease with increase in the tip gap without indicating any optimum value. Tip clearance flow has considerable effect on the flow through the diffuser and the unsteady flow gets amplified and carried away into the vane diffuser.


Sign in / Sign up

Export Citation Format

Share Document