Heat Transfer on a Turbocharger Under Constant Load Points

Author(s):  
A. Romagnoli ◽  
Ricardo Martinez-Botas

The processes occurring in turbo machinery applications are frequently treated as adiabatic. However, in a turbocharger significant heat transfer occurs, leading to a deficit of turbocharger performance. The overall objective of this experimental work is to improve the understanding of the heat transfer process taking place in a turbocharger when installed on an internal combustion engine. In order to do this, beyond the standard set of measurements needed to define the turbo operating point, a large number of thermocouples were installed on the turbocharger. The tests results allow the quantification of the temperatures within the turbocharger and revealed that a nonuniform temperature distribution exists on the compressor and turbine casings. This is partly attributed to the proximity of the turbocharger to the engine. This process plays a role on the deterioration of the compressor efficiency when compared to the corresponding adiabatic efficiency. A correlation that allows the calculation of the compressor exit temperature is proposed. The method uses the surface temperature of the bearing housing; it was validated against experimental data with deviations no larger than 3%. A simplified 1-dimensional heat transfer model was also developed and compared with experimental measurements. The algorithms calculate the heat transferred through the turbocharger, from the hot end to the cold end by means of lump masses. The compressor performance deterioration from the adiabatic map is predicted.

Author(s):  
Mario Schinnerl ◽  
Jan Ehrhard ◽  
Mathias Bogner ◽  
Joerg Seume

The measured performance maps of turbochargers which are commonly used for the matching process with a combustion engine are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to mid speeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called ‘thermo-mechanical’ turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional heat transfer model, non-dimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different turbochargers was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermo-mechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.


Author(s):  
Mario Schinnerl ◽  
Jan Ehrhard ◽  
Mathias Bogner ◽  
Joerg Seume

The measured performance maps of turbochargers (TCs), which are commonly used for the matching process with a combustion engine, are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to midspeeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called thermomechanical turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional (1D) heat transfer model, nondimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different TCs was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermomechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.


Author(s):  
Yujia Zhou ◽  
Hanliang Bo ◽  
Jingyu Du

With the purpose of enhancement of heat transfer performance and reduction of the volume of steam generator (SG), a structure of longitudinal finned tubes was proposed to replace the smooth tubes of SG in this paper. Taking the SG smooth tubes of Daya bay Nuclear Power plant as a reference, the simplified heat transfer model of new longitudinal finned tubes was established by ANSYS CFX. Three-dimensional numerical model was developed to investigate the fluid-solid coupled thermal hydraulic characteristics of different types of the longitudinal finned tubes compared with the smooth tubes. Analysis of calculation results were sufficiently discussed for the effect of mass flow rate, fin array, solid thermal conductivity and frictional resistance. The numerical results revealed that the heat transfer coefficient increase with the increasing mass flow rate in the secondary side. The material of the tubes has significantly influence on the heat transfer process. Different flow conditions have different thermal hydraulic characteristics. The evaluated criterion to judge the enhancement of the heat transfer of the coupled process was also proposed. The numerical results can provide some useful guidance for design optimization of longitudinal finned tubes in SG.


2011 ◽  
Vol 311-313 ◽  
pp. 1953-1956
Author(s):  
Jing Fu Jia ◽  
Wei He

To choose the suitable heat insulating material for refrigerated cargo hold shipboard of fishing vessel, a steady state three-dimensional mathematical model of heat transfer is developed in this paper. The heat-transfer model is simplified reasonably in order to facilitate analyzing and solving. After defining the boundary conditions of the model according to the heat-transfer process of the shipboard, numerical simulations with different heat insulating material are performed using computational fluid dynamics (CFD) software PHOENICS. The obtained temperature distributions of the model in each case are analyzed. The suitable one is pointed out according to the degree of influence of the heat insulating material on heat-transfer property of the shipboard.


Author(s):  
Shengjun Zhang ◽  
Feng Shen ◽  
Xu Cheng ◽  
Xianke Meng ◽  
Dandan He

According to the operation conditions of time unlimited passive containment heat removal system (TUPAC), a separate effect experiment facility was established to investigate the heat transfer performance of steam condensation in presence of non-condensable gas. The effect of wall subcooling temperature, total pressure and mass fraction of the air on heat transfer process was analyzed. The heat transfer model was also developed. The results showed that the heat transfer coefficient decreased with the rising of subcooling temperature, the decreasing of the total pressure and air mass fraction. It was revealed that Dehbi’s correlation predicted the heat transfer coefficient conservatively, especially in the low pressure and low temperature region. The novel correlation was fitted by the data obtained in the following range: 0.20~0.45 MPa in pressure, 20% ~ 80% in mass fraction, 15°C ~ 45°C in temperature. The discrepancy of the correlation and experiment data was with ±20%.


2020 ◽  
pp. 146808742092158
Author(s):  
Alberto Broatch ◽  
Pablo Olmeda ◽  
Xandra Margot ◽  
Josep Gomez-Soriano

This article presents a study of the impact on engine efficiency of the heat loss reduction due to in-cylinder coating insulation. A numerical methodology based on one-dimensional heat transfer model is developed. Since there is no analytic solution for engines, the one-dimensional model was validated with the results of a simple “equivalent” problem, and then applied to different engine boundary conditions. Later on, the analysis of the effect of different coating properties on the heat transfer using the simplified one-dimensional heat transfer model is performed. After that, the model is coupled with a complete virtual engine that includes both thermodynamic and thermal modeling. Next, the thermal flows across the cylinder parts coated with the insulation material (piston and cylinder head) are predicted and the effect of the coating on engine indicated efficiency is analyzed in detail. The results show the gain limits, in terms of engine efficiency, that may be obtained with advanced coating solutions.


Author(s):  
Rashad Aouf ◽  
Vojislav Ilic

A major challenge facing tumour treatment procedures, including hyperthermia, is the inadequate modelling of the bio-heat transfer process. Therefore, an accurate mathematical bio-heat transfer model has to precisely quantify the temperature distribution within a complex geometry of a tumour tissue, in order to help optimize unwanted side effects for patients and minimize (avoid) collateral tissue damage. This study examines the three-dimensional molecular dynamics (MDs) simulation of a Lennard-Jones fluid in the hope of contributing to the understanding of the propagation of a thermal wave in fluids causing phase change i.e. irreversible gelation. It is intended to establish, from such information, a useful benchmark for application to large scale phenomena involving macro scale heat transfer. Specifically, this study examines assemblies of N particles (N = 500 atoms) and analyses the microscopic simulation of double well interaction with permanent molecular bond formation at various temperatures within the range 1–2.5Kb/εT. The dynamics of the fluid is also being studied under the influence of a temperature gradient, dt/dx, where neighbouring particles (i.e. atoms/molecules) are randomly linked by permanent bonds to form clusters of different sizes. The atomic/molecular model consist of an isothermal source and sink whose particles are linked by springs to lattice sites to avoid melting, and a bulk of 500 atoms/molecules in the middle representing the Lennard-Jones fluid. Then, this study simulates the energy propagation following the temperature gradient between the heat source and heat sink at T1 = 2.5 and T2 = 1.5 respectively. The potential equation involved in this study is given by the Finitely Extensible Non Elastic (FENE) and Lennard-Jones (LJ) interaction potential. It is observed that the atoms of the bulk start to form a large cluster (∼ 300 atoms) with long time of simulation estimated by 106 time steps where τ = SQRT(ε/mσ2) and Δt = 10−3. It is also obtained that the potential energy of 13.65KbT across a barrier to establish permanent bonds giving rise to irreversible gel formation. All the parameters used in this study are expressed in Lennard-Jones units.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2709
Author(s):  
Yuan Chai ◽  
Shanqing Liang ◽  
Yongdong Zhou ◽  
Lanying Lin ◽  
Feng Fu

This study presents a model for simulating the microscopic heat transfer processes in a wood-metal composite material. The model was developed by analyzing the microstructure of experimental samples comprising a melted alloy impregnated in a wood matrix. According to the thermal parameters of the materials and the boundary conditions, an analytical model of microscale heat transfer was established using Abaqus finite element analysis software. The model was validated experimentally by comparing temperature curves obtained via simulation and experiments; the resulting correlation coefficient was 0.96557. We then analyzed the temperature distribution of the composite material with different cell geometries and heat transfer conditions (heat transfer direction and applied temperature). The thermal properties of the unit cell models were in good agreement with the general trends predicted by several heat transfer equations. This study provides a method for analyzing the microscale heat transfer process in wood-based composites. In addition, the model framework characteristics can be used to evaluate the heat transfer mechanism of impregnated modified wood.


Author(s):  
Mario Schinnerl ◽  
Joerg Seume ◽  
Jan Ehrhard ◽  
Mathias Bogner

Turbocharger performance maps used for the matching process with a combustion engine are measured on test benches which do not exhibit the same boundary conditions as the engine. However, these maps are used in engine simulations, ignoring that the compressor and turbine aerodynamic performance is rated on the basis of quantities which were measured at positions which do not coincide with the respective system boundaries of the turbomachinery. In the operating range of low to mid engine speeds, the ratio between the heat flux and the work done by the turbine and the compressor is much greater than at high speeds where heat transfer phenomena on the compressor side can usually be neglected. Heat losses on the turbine side must be taken into account even at higher shaft speeds when dealing with isentropic turbine efficiencies. Based on an extensive experimental investigation, a one-dimensional heat transfer model is developed. The compressor and turbine side are treated individually and divided into sections of inlet, wheel, outlet, diffuser, and volute. The model demonstrates the capability to properly account for the impact of heat transfer, and thereby improves the predictive accuracy of temperatures relevant for the matching process.


2018 ◽  
Vol 22 (5) ◽  
pp. 1943-1953 ◽  
Author(s):  
Jakov Baleta ◽  
Fengsheng Qi ◽  
Marija Zivic ◽  
Martina Lovrenic-Jugovic

Water spray quenching distinguished itself as a promising method for industry production, especially for the parts which require good mechanical strength while simultaneously retaining the initial toughness. Studies have shown that the heat transfer process during the spray quenching is mostly influenced by the spray impingement density, particle velocities and sizes. The application of advanced numerical methods still plays insufficient role in the development of the production process, in spite of the fact that industry today is facing major challenges that can be met only by development of new and more efficient systems using advanced tools for product development, one of which is CFD. Taking the above stated, the object of this research is numerical simulation of spray quenching process in order to determine validity of mathematical models implemented within the commercial CFD code Fire, especially droplet evaporation/condensation and droplet-wall heat transfer model. After review of the relevant literature suitable benchmark case was selected and simulated by employing discrete droplet method for the spray treatment and Eulerian approach for the gas phase description. Simulation results indicated that existing droplet/wall heat transfer model is not able to reproduce heat transfer of dense water spray. Thus, Lagrangian spray model was improved by implementing experimental correlation for heat transfer coefficient during spray quenching. Finally, verification of the implemented model was assessed based on the conducted simulations and recommendations for further improvements were given.


Sign in / Sign up

Export Citation Format

Share Document