LES and RANS Assessment of Rib Cooled Channel Related to SGT-800 Combustor Liner

Author(s):  
Daniel Lo¨rstad

The main parts of the annular combustor liner walls of the Siemens gas turbine SGT-800 are convectively cooled using rib turbulated cooling. Due to the serial system of cooling and combustion air there is a potential of further reduction of total combustor pressure drop by improvements of the cooling system. Apart from the rib cooling, also the cooling channel bypass entrance is related to a significant part of the total cooling system pressure drop. In this study, an investigation is performed for a rib cooled channel which is related to the considered combustor liner and where empirical correlations are available in order to evaluate the methodology used. The study includes an assessment of the Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) models available within commercial Computational Fluid Dynamics (CFD) codes and includes also an investigation of model size when using periodic boundaries for LES simulations. It is well known that a small geometrical distance in the direction of the periodic boundaries may have a strong effect on the flow field but is often neglected in practice in order to speed up LES calculations. Here the effect is assessed in order to show what size is required for accurate results, both for time averaged and transient results. In addition too small domains may be affected by spurious low frequencies originating from the periodic boundaries requiring additional simulation time for time converged statistics, but also the averages may be significantly affected. In addition the simulation period for time converged statistics is evaluated in order to show that larger model size in the periodic direction does not necessarily require longer practical simulation time, due to the fact that larger volumes may be used for the combined time and space averaging. The aim is to obtain practical guidelines for LES calculations for internal cooling flows. Then the study is extended step by step to investigate the importance due to high Reynolds number, variable fluid properties and large temperature gradients in order to cover the ranges and specifics required for SGT-800 engine conditions.

Author(s):  
N. Cristobal Uzarraga-Rodriguez ◽  
Armando Gallegos-Mun˜oz ◽  
J. Cuauhtemoc Rubio-Arana ◽  
Alfonso Campos-Amezcua ◽  
Mazur Zdzislaw

A numerical analysis of a gas turbine first stage bucket with internal cooling (model MS7001E) is presented. The internal cooling system consists of 13 cylindrical channels with turbulent promoters (ribs), which are implemented in order to achieve temperature decrements inside the body blade. Three different geometrics (square, triangular and semi-circular cross-section) are studied. Each configuration is analyzed having full or half ribs. These are placed inside the cooling channels. The effects generated by the aspect ratio variation between rib pitch and rib height (P/e), for a constant aspect ratio given by ribs height and hydraulic diameter (e/Dh) are considered. The numerical simulation was developed using finite volume method, by means of commercial software based on computational fluid dynamics (CFD). Each one of the models generated for each study case was built in a 3D model, including the platform and airfoil of the blade. The models consider the effects generated by the hot combustion gases are flowing around the blade and the coolant flow is flowing inside the cooling channels. The study includes the solution of the conjugate heat transfer. The results show that the cooling channels with squared and triangular full-ribs present better cooling effects inside the body blade, reducing the temperature until 10°C at some point in the blade. However, these configurations produce a pressure drop from 3 to 4 times higher than cooling channels without ribs. The half ribs produce lesser temperature decrement, having smaller pressure drop. On other hand, the aspect ratio (P/e) has only effects on the pressure drop.


Author(s):  
Grzegorz Nowak

This paper discusses the problem of cooling system optimization within a gas turbine airfoil regarding to thermo-mechanical behavior of the component, as well as some economical aspects of turbine operation. The main goal of this paper is to show the possibilities of evolutionary approach application to the cooling system optimization. This method, despite its relatively high computational cost, seems to be a valuable tool to such technical problems. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially cooling is provided with circular passages and heat is transported by convection. During the optimization the number of channels can vary. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. Also a constant pressure drop is assumed along the passage length. The thermal boundary conditions in passages vary with diameter and local vane temperature (passage wall temperature). The analysis is performed by means of the genetic algorithm for the optimization task and FEM for the heat transfer predictions within the component. In the present study the airfoil profile is taken as aerodynamically optimal and the objective of the search procedure is to find cooling structure variant that at given external conditions provides lower stresses, material temperature and indirectly coolant usage.


Author(s):  
D. Jackson ◽  
P. Ireland ◽  
B. Cheong

Progress in the computing power available for CFD predictions now means that full geometry, 3 dimensional predictions are now routinely used in internal cooling system design. This paper reports recent work at Rolls-Royce which has compared the flow and htc predictions in a modern HP turbine cooling system to experiments. The triple pass cooling system includes film cooling vents and inclined ribs. The high resolution heat transfer experiments show that different cooling performance features are predicted with different levels of fidelity by the CFD. The research also revealed the sensitivity of the prediction to accurate modelling of the film cooling hole discharge coefficients and a detailed comparison of the authors’ computer predictions to data available in the literature is reported. Mixed bulk temperature is frequently used in the determination of heat transfer coefficient from experimental data. The current CFD data is used to compare the mixed bulk temperature to the duct centreline temperature. The latter is measured experimentally and the effect of the difference between mixed bulk and centreline temperature is considered in detail.


2015 ◽  
Vol 51 (12) ◽  
pp. 1779-1790 ◽  
Author(s):  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Jun Su Park ◽  
Beom Seok Kim ◽  
Hyung Hee Cho

2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.


Author(s):  
Weilun Zhou ◽  
Qinghua Deng ◽  
Wei He ◽  
Zhenping Feng

The laminated cooling, also known as impingement-effusion cooling, is believed to be a promising gas turbine blade cooling technique. In this paper, conjugate heat transfer analysis was employed to investigate the overall cooling effectiveness and total pressure loss of the laminated cooling configuration. The pitch to film hole diameter ratio P/Df of 3, 4, 5, 6, combined with pitch to impingement hole diameter ratio P/Di of 4, 6, 8, 10, are studied at the coolant mass flux G of 0.5, 1.0, 1.5, 2.0 kg/(sm2bar) respectively. The results show that overall cooling effectiveness of laminated cooling configuration increases with the decreasing of P/Df and the increasing of the coolant mass flux in general. However P/Df smaller than 3 may leads to a serious blocking in first few film holes at low coolant mass flux. The large P/Di that makes the Mach number of impingement flow greater than 0.16 may cause unacceptable pressure loss. The increment of overall cooling effectiveness depends on the difference between the deterioration of external cooling and the enhancement of internal cooling. Pressure loss increases exponentially with P/Di and G, and it increases more slowly with P/Df that compared to P/Di and G. The mixing loss takes up the most pressure loss at low coolant mass flux. With the increasing of the whole pressure loss, the proportion of throttling loss and laminated loss becomes larger and finally takes up the most of the whole pressure loss. When the sum of throttling loss and laminated loss is greater than mixing loss, the increment of system pressure ratio is unreasonable that compared to the increment of overall cooling effectiveness.


Author(s):  
L. W. Soma ◽  
F. E. Ames ◽  
S. Acharya

The trailing edge of a vane is one of the most difficult areas to cool due to a narrowing flow path, high external heat transfer rates, and deteriorating external film cooling protection. Converging pedestal arrays are often used as a means to provide internal cooling in this region. The thermally induced stresses in the trailing edge region of these converging arrays have been known to cause failure in the pedestals of conventional solidity arrays. The present paper documents the heat transfer and pressure drop through two high solidity converging rounded diamond pedestal arrays. These arrays have a 45 percent pedestal solidity. One array which was tested has nine rows of pedestals with an exit area in the last row consistent with the convergence. The other array has eight rows with an expanded exit in the last row to enable a higher cooling air flow rate. The expanded exit of the eight row array allows a 30% increase in the coolant flow rate compared with the nine row array for the same pressure drop. Heat transfer levels correlate well based on local Reynolds numbers but fall slightly below non converging arrays. The pressure drop across the array naturally increases toward the trailing edge with the convergence of the flow passage. A portion of the cooling air pressure drop can be attributed to acceleration while a portion can be attributed to flow path losses. Detailed array static pressure measurements provide a means to develop a correlation for the prediction of pressure drop across the cooling channel. Measurements have been acquired over Reynolds numbers based on exit flow conditions and the characteristic pedestal length scale ranging from 5000 to over 70,000.


Author(s):  
Dong-Il Kim ◽  
Ki-So Bok ◽  
Han-Bae Lee

To seek the fan operating point on a cooling system with fans, it is very important to determine the system impedance curve and it has been usually examined with the fan tester based on ASHRAE standard and AMCA standard. This leads to a large investment in time and cost, because it could not be executed until the system is made actually. Therefore it is necessary to predict the system impedance curve through numerical analysis so that we could reduce the measurement time and effort. This paper presents how the system impedance curve (pressure drop curve) is computed by CFD in substitute for experiment. In reverse order to the experimental principle of the fan tester, pressure difference was adopted first as inlet and outlet boundary conditions of the system and then flow rate was calculated. After determining the system impedance curve, it was compared with experimental results. Also the computational domain of the system was investigated to minimize computational time.


Author(s):  
C. Selcan ◽  
B. Cukurel ◽  
J. Shashank

In an attempt to investigate the acoustic resonance effect of serpentine passages on internal convection heat transfer, the present work examines a typical high pressure turbine blade internal cooling system, based on the geometry of the NASA E3 engine. In order to identify the associated dominant acoustic characteristics, a numerical FEM simulation (two-step frequency domain analysis) is conducted to solve the Helmholtz equation with and without source terms. Mode shapes of the relevant identified eigenfrequencies (in the 0–20kHz range) are studied with respect to induced standing sound wave patterns and the local node/antinode distributions. It is observed that despite the complexity of engine geometries, as a first order approximation, the predominant resonance behavior can be modeled by a same-ended straight duct. Therefore, capturing the physics observed in a generic geometry, the heat transfer ramifications are experimentally investigated in a scaled wind tunnel facility at a representative resonance condition. Focusing on the straight cooling channel’s longitudinal eigenmode in the presence of an isolated rib element, the impact of standing sound waves on convective heat transfer and aerodynamic losses are demonstrated by liquid crystal thermometry, local static pressure and sound level measurements. The findings indicate a pronounced heat transfer influence in the rib wake separation region, without a higher pressure drop penalty. This highlights the potential of modulating the aero-thermal performance of the system via acoustic resonance mode excitations.


Author(s):  
Christian Egger ◽  
Jens von Wolfersdorf ◽  
Martin Schnieder

In this paper a transient method for measuring heat transfer coefficients in internal cooling systems using infrared thermography is applied. The experiments are performed with a two-pass internal cooling channel connected by a 180° bend. The leading edge and the trailing edge consist of trapezoidal and nearly rectangular cross sections, respectively, to achieve an engine-similar configuration. Within the channels rib arrangements are considered for heat transfer enhancement. The test model is made of metallic material. During the experiment the cooling channels are heated by the internal flow. The surface temperature response of the cooling channel walls is measured on the outer surface by infrared thermography. Additionally, fluid temperatures as well as fluid and solid properties are determined for the data analysis. The method for determining the distribution of internal heat transfer coefficients is based on a lumped capacitance approach which considers lateral conduction in the cooling system walls as well as natural convection and radiation heat transfer on the outer surface. Because of time-dependent effects a sensitivity analysis is performed to identify optimal time periods for data analysis. Results are compared with available literature data.


Sign in / Sign up

Export Citation Format

Share Document