Calibration of Gas Turbine Blade Temperature Predictions Using Surrogate Models

Author(s):  
John M. McFarland ◽  
Grant O. Musgrove ◽  
Sung Yong Chang ◽  
David L. Ransom

Actual gas turbine performance and component life at specific engine installations is highly dependent on the actual operating conditions, since not all engines are operated in the same manner. Due to the variability in turbine operation, it may be prudent to evaluate the operation of hot section components for turbine inlet conditions that are specific to a single installation. However, determining the actual turbine inlet conditions can be a difficult and expensive process that is usually only done on test bed gas turbines. This paper presents a method to determine turbine inlet conditions using a model calibration approach. Two-stage CFD and thermal analyses are developed to predict blade temperature. By varying the model inputs, computational predictions of blade temperature are calibrated to blade interdiffusion zone thickness measurements. In order to speed up calculations, surrogate models are used in place of the full-scale analysis codes during the calibration analysis. The result of the study is a prediction of the turbine inlet profile necessary to obtain the best agreement between predicted and measured blade temperatures.

Author(s):  
Vladimir Zilberstein ◽  
Ian Shay ◽  
Robert Lyons ◽  
Neil Goldfine ◽  
Thomas Malow ◽  
...  

Coatings for oxidation, corrosion, and thermal protection provide the required materials performance for gas turbine blades and vanes in state-of-the-art industrial gas turbines. These turbines must withstand severe operating conditions for well over ten thousand hours. Variations in the coating thickness, and increased porosity, can influence the lifetime of such coatings significantly. For components that have been removed from service, effective assessment of the aged coating and substrate condition is critical for refurbish/replace/continue-to-run decisions. A suitable device for coating thickness measurement and detection of unacceptable porosity is needed for ensuring the quality of such coatings. In this paper, we present new results on coating thickness measurements for metallic MCrAlY overlay coatings on gas turbine parts. These measurements were performed with a Meandering Winding Magnetometer (MWM®) eddy-current sensor using grid methods. This technique allows proper coating measurements even after a diffusion heat treatment for a better coating adhesive strength. The MWM technology enables measurement of the coating thickness, the absolute electrical conductivity (which may in turn be related to porosity or other properties of interest), and lift-off, which is related to surface roughness. Single-channel MWM sensors and multi-channel imaging MWM-Arrays permit capture of features of interest for a population of components. New capabilities for inspecting gas turbine components are, thus, provided. Inspection applications include metallic and non-metallic coating thickness measurements, porosity measurements, and detection of cracks on complex surfaces. Results of coating assessment for a production line of gas turbine vanes by means of a multifrequency MWM technique are presented for various combinations of coatings and base metals. A description of improved multiple frequency quantitative inversion methods is provided for simultaneous and independent measurement of multiple unknowns such as metallic bond coat thickness, metallic bond coat porosity, and top coat thickness. Ongoing research focuses on characterization of aged components using MWM sensors and imaging MWM-Arrays as well as on development of enhanced algorithms for four and five unknown coating / substrate properties. In a recent study of hot corrosion, uncoated nickel alloy specimens were characterized using an MWM sensor with grid methods. Preliminary results indicated that, within the limitations of the three-unknown single-layer model used, the method could readily identify specimens with no apparent corrosion damage, specimens with moderate corrosion damage, and specimens with severe corrosion damage.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 389
Author(s):  
Jinfu Liu ◽  
Zhenhua Long ◽  
Mingliang Bai ◽  
Linhai Zhu ◽  
Daren Yu

As one of the core components of gas turbines, the combustion system operates in a high-temperature and high-pressure adverse environment, which makes it extremely prone to faults and catastrophic accidents. Therefore, it is necessary to monitor the combustion system to detect in a timely way whether its performance has deteriorated, to improve the safety and economy of gas turbine operation. However, the combustor outlet temperature is so high that conventional sensors cannot work in such a harsh environment for a long time. In practical application, temperature thermocouples distributed at the turbine outlet are used to monitor the exhaust gas temperature (EGT) to indirectly monitor the performance of the combustion system, but, the EGT is not only affected by faults but also influenced by many interference factors, such as ambient conditions, operating conditions, rotation and mixing of uneven hot gas, performance degradation of compressor, etc., which will reduce the sensitivity and reliability of fault detection. For this reason, many scholars have devoted themselves to the research of combustion system fault detection and proposed many excellent methods. However, few studies have compared these methods. This paper will introduce the main methods of combustion system fault detection and select current mainstream methods for analysis. And a circumferential temperature distribution model of gas turbine is established to simulate the EGT profile when a fault is coupled with interference factors, then use the simulation data to compare the detection results of selected methods. Besides, the comparison results are verified by the actual operation data of a gas turbine. Finally, through comparative research and mechanism analysis, the study points out a more suitable method for gas turbine combustion system fault detection and proposes possible development directions.


Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


Author(s):  
Terry B. Sullivan ◽  
Michael Giampetro

This paper provides comprehensive methodology on testing inlet chiller systems that are used for Gas Turbine Inlet Air Conditioning. It will serve as a guiding document for the Inlet Chiller Project Team formed by PTC 51, “Combustion Turbine Inlet Air Conditioning Equipment” for use in scripting that code’s section on Inlet Chiller Performance Testing. This paper shows the conceptual similarities that can be drawn between inlet chiller and overall plant performance testing, as well as detailing the pertinent test scopes and boundaries, identifying expected test objectives, and listing the applicable test boundary parameters to be used for correction. Addressing an industry need, this paper also offers guidance on testing these components / systems at conditions different than design. Current equipment code committees, such as ASME PTC 22 on Gas Turbines, and ASME PTC 46 on Overall Plant Performance Testing, have concluded that inlet air conditioning equipment must be out of service while testing the major plant equipment. This would require the inlet chilling system to be tested separately. This requirement dictates that a technically-sound method of inlet chiller testing be codified in a timely manner.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


Author(s):  
Hiroaki Endo ◽  
Robert Wetherbee ◽  
Nikhil Kaushal

An ever more rapidly accelerating trend toward pursuing more efficient gas turbines pushes the engines to hotter and more arduous operating conditions. This trend drives the need for new materials, coatings and associated modeling and testing techniques required to evaluate new component design in high temperature environments and complex stress conditions. This paper will present the recent advances in spin testing techniques that are capable of creating complex stress and thermal conditions, which more closely represent “engine like” conditions. The data from the tests will also become essential references that support the effort in Integrated Computational Materials Engineering (ICME) and in the advances in rotor design and lifing analysis models. Future innovation in aerospace products is critically depended on simultaneous engineering of material properties, product design, and manufacturing processes. ICME is an emerging discipline with an approach to design products, the materials that comprise them, and their associated materials processing methods by linking materials models at multiple scales (Structural, Macro, Meso, Micro, Nano, etc). The focus of the ICME is on the materials; understanding how processes produce material structures, how those structures give rise to material properties, and how to select and/or engineer materials for a given application [34]. The use of advanced high temperature spin testing technologies, including thermal gradient and thermo-mechanical cycling capabilities, combined with the innovative use of modern sensors and instrumentation methods, enables the examination of gas turbine discs and blades under the thermal and the mechanical loads that are more relevant to the conditions of the problematic damages occurring in modern gas turbine engines.


Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vedant Dwivedi ◽  
Srikanth Hari ◽  
S. M. Kumaran ◽  
B. V. S. S. S. Prasad ◽  
Vasudevan Raghavan

Abstract Experimental and numerical study of flame and emission characteristics in a tubular micro gas turbine combustor is reported. Micro gas turbines are used for distributed power (DP) generation using alternative fuels in rural areas. The combustion and emission characteristics from the combustor have to be studied for proper design using different fuel types. In this study methane, representing fossil natural gas, and biogas, a renewable fuel that is a mixture of methane and carbon-dioxide, are used. Primary air flow (with swirl component) and secondary aeration have been varied. Experiments have been conducted to measure the exit temperatures. Turbulent reactive flow model is used to simulate the methane and biogas flames. Numerical results are validated against the experimental data. Parametric studies to reveal the effects of primary flow, secondary flow and swirl have been conducted and results are systematically presented. An analysis of nitric-oxides emission for different fuels and operating conditions has been presented subsequently.


Sign in / Sign up

Export Citation Format

Share Document