Influence of the Air Preheat Temperature and the Fuel Preheat Temperature in the Adiabatic Flame Temperature for Gaseous Fuels of Low Heating Value

Author(s):  
A. Tourlidakis ◽  
A. Malkogianni

Adiabatic flame temperature is of significant importance for the design of a GT combustor, as it is the temperature under the condition of no heat loss takes place from the combustion system. This importance arises from the fact that it plays an important role in the pollutants emitted from the system, such as carbon oxides and nitrogen oxides. Additionally, the temperature also affect the thermal stresses set up in the combustion system, such stress may lead to the deterioration of the chamber if not well controlled. Consequently, it is essential before the construction of the combustion chamber, a simulation process for the temperature distribution within the combustion system to be carried out, in order to avoid local thermal stresses and to minimize nitrogen oxides and carbon dioxides emissions, pollutants of great concern, that are very dependent on the flame temperature. The factors that predominantly affect the adiabatic flame temperature are the fuel heating value, the type of oxidant, FAR, the temperature of the reactants, the amount of oxygen in the air, as well as the dissociation phenomena. In this study, a code in FORTRAN programming language is developed for the calculation of the adiabatic flame temperature. The simulation is performed for different gaseous fuels of low calorific value, for air preheat, for fuel preheat, as well as for various Φ. From the simulation resulted that Tad and Φ for each fuel are totally dependent on the fuel’s calorific value. Both for the case of the air preheat, and the fuel preheat temperature it was observed increase of the Tad. Preheating of combustible mixture by recycling heat from flue gases has been considered an effective technology not only for combustion of low calorific fuels but also for fuel conservation.

2013 ◽  
Vol 12 (2) ◽  
pp. 08
Author(s):  
E. B. Silva ◽  
C. Bringhenti ◽  
M. Assato ◽  
R. C. Lima

Usually, power plants work with gas turbine designed to fire natural gas; however, there are possibilities to use other types of gaseous fuels with different calorific values that may be available close to the power plant site. These fuels can be gases obtained from steel (from blast furnaces and coking plants), from gasification processes of coal or biomass, among others. In this work, a gas turbine performance was evaluated at different operational conditions in order to verify the technical feasibility of burning low calorific value fuels. A gas turbine designed to operate with natural gas was used as a reference, the model was built and the performance evaluated at design and off-design conditions using a commercial computer program, GasTurb 11®. A good agreement was obtained between the model operating with natural gas and the available data from open literature, at design and off-design conditions. The model was simulated using low heating value fuels under the same conditions established for natural gas. A reduction in compressor’s surge margin was identified when using low heating value fuels as well as an increase in power output. Therefore, for safe operation a strategy for recovering the surge margin was adopted. In this study the control strategy adopted was bleed air at the compressor discharge. This control strategy presents a technical viability and ensures that the gas turbine operates with the same surge margin level as when using natural gas.


Author(s):  
Juan Pablo GOMEZ MONTOYA ◽  
Andres Amell

Abstract Combustion at the knocking threshold was tested using fuels with different methane numbers (MN) in a modified SI engine, with high compression ratio (CR) and high turbulence intensity to the combustion process; fuels were tested in a CFR engine to measure MN and critical compression ratio (CCR); in both engines test were performed just into the knocking threshold. Is proposed that MN to gaseous fuels will be considered in similar way than octane number (ON) to liquid fuels to indicate the energy quality and the capacity to produce work. According to the tests biogas has better combustion properties than the others fuels; biogas is the fuel with the highest knocking resistance; biogas is the fuel with the best energy quality measured with the energy density and combustion temperature; biogas has the highest capacity to produce work in SI engines, because its high MN, low energy density, low laminar flame speed and low adiabatic flame temperature. Fuel combustion phenomenological characteristics were compared using CCR versus: output power, generating efficiency, energy density, laminar flame speed and adiabatic flame temperature. It is suggested that the strategies to suppress knocking are the key to improve the performance of SI engines; knocking is the engine limit to power generation in SI engines and quantum thermal efficiency is defined at this condition.


Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Karl-Georg Schmelz ◽  
Anja Reipa ◽  
Hartmut Meyer

Emschergenossenschaft and Lippeverband operate 59 wastewater treatment plants which produce approx. 100,000 Mg TS of sewage sludge each year. Using sludge pressure pipelines, about 60 % of this sludge are transported to the central sludge treatment plant in Bottrop. The digested sludges are conditioned using fine coal and polymers and are dewatered using membrane filters. By adding coal, the heating value of the sludge is raised which enables autothermal combustion of the dewatered sludges in fluidised bed furnaces at the central sludge treatment plant. In order to replace coal, a fossil fuel, as conditioning agent, experiments were conducted using alternative materials with high heating values. The addition of shredder fluff agglomerates proved to be particularly successful. Shredder fluff agglomerates are a residue from the recycling of used cars and are generated in a multistage process (e.g. Volkswagen-SiCon Process) by separating the light shredder fraction (plastic components etc.) from the total shredder fluff. The fibrous material is outstandingly suitable for improving the dewaterability and for sufficiently raising the heating value of the dewatered sludge in order to enable autothermal combustion. Since first experiments showed very positive results, a full-scale long-term test-run will take place in 2007.


2013 ◽  
Vol 781-784 ◽  
pp. 2471-2475 ◽  
Author(s):  
B. M. Masum ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
S. M. Palash

Active research and development on using ethanol fuel in gasoline engine had been done for few decades since ethanol served as a potential of infinite fuel supply. This paper discussed analytically and provides data on the effects of compression ratio, equivalence ratio, inlet temperature, inlet pressure and ethanol blend in cylinder adiabatic flame temperature (AFT) and nitrogen oxide (NO) formation of a gasoline engine. Olikara and Borman routines were used to calculate the equilibrium products of combustion for ethanol gasoline blended fuel. The equilibrium values of each species were used to predict AFT and the NO formation of combustion chamber. The result shows that both adiabatic flame temperature and NO formation are lower for ethanol-gasoline blend than gasoline fuel.


Author(s):  
A. K. Malkogianni ◽  
A. Tourlidakis ◽  
A. L. Polyzakis

Geopolitical issues give rise to problems in the smooth and continuous flow of oil and natural gas from the production countries to the consumers’ development countries. In addition, severe environmental issues such as greenhouse gas emissions, eventually guide the consumers to fuels more suitable to the present situation. Alternative fuels such as biogas and coal gas have recently become more attractive because of their benefits, especially for electricity generation. On the other hand, the use of relatively low heating value fuels has a significant effect to the performance parameters of gas turbines. In this paper, the impact of using four fuels with different heating value in the gas turbine performance is simulated. Based on the high efficiency and commercialization criteria, two types of engines are chosen to be simulated: two-shaft simple and single-shaft recuperated cycle gas turbines. The heating values of the four gases investigated, correspond to natural gas and to a series of three gases with gradually lower heating values than that of natural gas. The main conclusions drawn from this design point (DP) and off-design (OD) analysis is that, for a given TET, efficiency increases for both engines when gases with low heating value are used. On the contrary, when power output is kept constant, the use of gases with low heating value will result in a decrease of thermal efficiency. A number of parametric studies are carried out and the effect of operating parameters on performance is assessed. The analysis is performed with customized software, which has been developed for this purpose.


2020 ◽  
Vol 0 (10) ◽  
pp. 35-40
Author(s):  
S.I. Gertsyk ◽  
◽  
I.V. Belyakov ◽  

The formation probability of nitrogen oxides in combustion products of mixed blast-furnace and natural gases under different conditions of combustion was calculated. It has been found out that heating the air incoming into burners of high-temperature blast-furnaces sharply increases concentration of nitrogen oxides in combustion products (by 1.5-1.75 times). It was notices that in furnaces where temperature was less than 950-1000 °С, heating the air up to 400 °С increased NOx content in gases released to the atmosphere no more than by 20-23%, and oxide concentration was in limits of sanitary standards.


2021 ◽  
Author(s):  
Simeon Dybe ◽  
Richard Bluemner ◽  
Sebastian Schimek ◽  
Michael Bartlett ◽  
Panagiotis Stathopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document