Effect of Dome Geometry on Swirling Flow Field Characteristics of a Counter-Rotating Radial-Radial Swirler

Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

An experimental study has been conducted to study the effect of the dome geometry on the aerodynamic characteristics of a non-reacting flow field. The flow was generated by a counter-rotating radial-radial swirler consisting of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. The dome geometry was modified by introducing dome expansion angles of 60° and 45° with respect to the swirler centerline, in addition to the baseline case of sudden expansion (90°). The flow downstream of the swirler is confined by a 50.8mm × 50.8mm × 304.8mm (2″ × 2″ × 12″) plexiglass chamber. A two-component laser doppler velocimetry (LDV) system was used to measure the velocities in the flow field. The dome geometry is seen to have a clear impact on mean swirling flow structure near the swirler exit rather than the downstream flow field. For the configurations with 60° and 45° expansion, no corner recirculation zone is observed and the swirling flow structure is asymmetric due to the non-axisymmetric dome geometry. The cross-section area of central recirculation zone is larger for dome geometry with 60° expansion angle, as compared to the 90° and 45° cases. The configurations with 60° and 45° expansion have higher magnitudes of negative velocity inside the core of central recirculation zone, as compared to the configuration with 90° expansion angle.

2015 ◽  
Vol 789-790 ◽  
pp. 477-483
Author(s):  
A.R. Norwazan ◽  
M.N. Mohd Jaafar

This paper is presents numerical simulation of isothermal swirling turbulent flows in a combustion chamber of an unconfined burner. Isothermal flows of with three different swirl numbers, SN of axial swirler are considered to demonstrate the effect of flow axial velocity and tangential velocity to define the center recirculation zone. The swirler is used in the burner that significantly influences the flow pattern inside the combustion chamber. The inlet velocity, U0 is 30 m/s entering into the burner through the axial swirler that represents a high Reynolds number, Re to evaluate the differences of SN. The significance of center recirculation zone investigation affected by differences Re also has been carried out in order to define a good mixing of air and fuel. A numerical study of non-reacting flow into the burner region is performed using ANSYS Fluent. The Reynolds–Averaged Navier–Stokes (RANS) realizable k-ε turbulence approach method was applied with the eddy dissipation model. An attention is focused in the flow field behind the axial swirler downstream that determined by transverse flow field at different radial distance. The results of axial and tangential velocity were normalized with the U0. The velocity profiles’ behaviour are obviously changes after existing the swirler up to x/D = 0.3 plane. However, their flow patterns are similar for all SN after x/D = 0.3 plane towards the outlet of a burner.


Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

A series of experiments have been conducted to study the aerodynamic characteristics of a confined swirling flow generated by multiple rad-rad swirlers arranged linearly. The rad-rad swirlers used in this study are identical, and consist of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. A two-component Laser Doppler Velocimetry (LDV) system was employed to measure the velocity in the flow field. Initial measurements were conducted on unconfined and confined flow generated by a single swirler to serve as the baseline reference for the multi-swirler arrangements. Tests were conducted for 3 and 5 swirlers arranged in a line, with a spacing of 2D between the swirler centers, where D is the swirler exit diameter. An additional 5 swirler configuration was tested, where the exit plane of the center swirler was shifted 3.2 mm (1/8 inch) in the streamwise direction. The flow field generated by the multi-swirler arrangement is very complex, due to the interaction between the swirling jets of adjacent swirlers. The number of swirlers is seen to have a clear impact on the entire flow structure, as well as each recirculation zone. For the 3 swirler arrangement, a weak CTRZ is observed for the center swirler, whereas strong CTRZs are observed for the two outer swirlers. For the 5 swirler arrangement, the CTRZ pattern for the 3 inner swirlers is the same strong-weak-strong as seen for the 3 swirler arrangements, with weak CTRZs observed for the two outer swirlers. Higher interaction between swirlers is observed for the 5 swirler arrangement, as compared to the case with 3 swirlers. Since the swirlers are identical, the region between swirlers features merging of two opposing swirling jets, producing high turbulence intensity in the near field region. For the case with the offset center swirler, the swirling jet from this swirler did not merge with its neighbors in the near field region. This resulted in strong CTRZ for the center swirler, accompanied by weaker CTRZs at its immediate neighbors, which is reverse of the CTRZ strength pattern observed for the initial 5 swirler arrangement.


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
Norwazan A. R ◽  
Mohammad Nazri Mohd. Jaafar

This paper presents a numerical simulation of swirling turbulent flows in combustion chamber of unconfined burner. Isothermal flows with three different swirl numbers using axial swirler are used to demonstrate the effect of flow in axial velocity and tangential velocity on the center recirculation zone. The significance of center recirculation zone is to ensure a good mixing of air and fuel in order to get a better combustion. The inlet velocity, U0 is 30 m/s entering into the burner through the axial swirler that is represents a high Reynolds number. A numerical study of non-reacting flow in the burner region is performed using ANSYS Fluent. The Reynolds–Averaged Navier–Stokes (RANS) standard k-ε turbulence approach method was applied with the eddy dissipation model. The paper focuses the flow field behind the axial swirler downstream that determined by transverse flow field at different on radial distances. The results of axial and tangential velocity were normalized with the inlet velocity. The velocity profiles are different after undergoing the different swirler up to the burner exit. However, the results of velocity profile showed that the high SN gives a better swirling flow patterns. 


Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

An experimental study has been conducted to examine the effect of chamber length on the aerodynamic characteristics of an enclosed, non-reacting, swirling, flow field. The swirling flow was generated by a counter-rotating radial-radial swirler consisting of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. The enclosures used were square cross-section chambers of differing lengths. The internal cross section of all chambers was 50.8 mm × 50.8 mm (2 inch × 2 inch). 3 different lengths of chamber used for the tests were 76.2 mm (3″), 101.6 mm (4″), and 152.4 mm (6″) respectively. A nozzle was used at the downstream end of the enclosure to ensure the absence of reverse flow back to test chamber and to simulate the area reduction in typical combustor. The nozzle reduced the cross-section area from 50.8 mm × 50.8 mm (2″ × 2″) to 22.2 mm × 22.2 mm (0.875″ × 0.875″) via 45° slope. A two-component laser doppler velocimetry (LDV) system was used to measure the velocities in the flow fields. The chamber length has been observed to have a clear influence on the mean and turbulent velocity profile near the exit of swirler. However, this effect is not as evident further downstream in the flow field. For the short chamber length, higher values of axial and tangential velocities were observed in the swirling jet due to the proximity of the downstream nozzle to the swirler. For this chamber length, higher turbulence intensities were observed in the swirling jet and inside center toroidal recirculation zone. The magnitudes of the swirling jet velocity and the turbulence intensities decreased with an increase in the chamber length. Two counter-rotating flows could merge more complete in the exit of swirler with the chamber length decreasing.


Author(s):  
Bassam Mohammad ◽  
San-Mou Jeng ◽  
M. Gurhan Andac

Transverse dilution jets are widely used in combustion systems. The current research provides a detailed study of the primary jets of a realistic annular combustion chamber sector. The combustor sector comprises an aerodynamic diffuser, inlet cowl, combustion dome, primary dilution jets, secondary dilution jets and cooling strips to provide convective cooling to the liner. The chamber contracts toward the end to fit the turbine nozzle ring. 2D PIV is employed at an atmospheric pressure drop of 4% (isothermal) to delineate the flow field characteristics. The laser is introduced to the sector through the exit flange. The interaction between the primary jets and the swirling flow as well as the sensitivity of the primary jets to perturbations is discussed. The perturbation study includes: effect of partially blocking the jets, one at a time, the effect of blocking the convective cooling holes, placed underneath the primary jets and shooting perpendicular to it. In addition, the effect of reducing the size of the primary jets as well as off-centering the primary jets is explained. Moreover, PIV is employed to study the flow field with and without fuel injection at four different fuel flow rates. The results show that the flow field is very sensitive to perturbations. The cooling air interacts with the primary jet and influences the flow field although the momentum ratio has a 100:1 order of magnitude. The results also show that the big primary jets dictate the flow field in the primary zone as well as the secondary zone. However, relatively smaller jets mainly influence the primary combustion zone because most of the jet is recirculated back to the CRZ. Also, the jet penetration is reduced with 25% and 11.5% corresponding to a 77% and 62% reduction of the jet’s area respectively. The study indicates the presence of a critical jet diameter beyond which the dilution jets have minimum impact on the secondary region. The jet off-centering shows significant effect on the flow field though it is in the order of 0.4 mm. The fuel injection is also shown to influence the flow field as well as the primary jets angle. High fuel flow rate is shown to have very strong impact on the flow field and thus results in a strong distortion of both the primary and secondary zones. The results provide useful methods to be used in the flow field structure control. Most of the effects shown are attributed to the difference in jet opposition. Hence, the results are applicable to reacting flow.


Author(s):  
Bassam Mohammad ◽  
San-Mou Jeng

The method of admission of the swirling flow to the combustion chamber has a strong influence on the flow field structure in Gas Turbine Combustors (GTC). Two different exit configurations are studied. The first configuration is that of a swirl cup that ends only with a splash plate such that there is a sudden unguided expansion as the flow emanates from the swirl cup. The second is a swirl cup that ends with a splash plate and an asymmetric combustion dome. Laser Doppler Velocimetry (LDV) measurements are conducted in the horizontal plane (X-Y), for both configurations, 5mm from the flare exit. Also, LDV measurements are conducted in two vertical planes passing by the combustor centerline (X-Z and Y-Z). The results reveal a significant difference in the flow structure for both configurations. The combustion dome appears to reduce the turbulence activities close to the exit of the swirl cup. In addition, the presence of the combustion dome eliminates the corner recirculation zone and the low velocity region close to the combustor walls. It is interesting to see that the asymmetry of the combustion dome (9° difference in the expansion angle on both sides) results in a significant asymmetry in the velocity magnitude as well as the turbulence activities. Moreover, the asymmetry in the combustion dome results in a tilting of the CRZ toward the surface with the higher expansion angle. The results highlight the importance of the proper and careful design of the GTC front section. The experiments are conducted in a dump combustor (rectangular cross section). To study the effect of the chamber geometry on the flow field, the base configuration is installed in an annular combustor sector and LDV measurements are conducted in the axial radial plane (X-Z). The flow field as well as the shape of the CRZ are significantly different in both cases. The CRZ height reduced by 40% with the swirl cup installed to the SAC sector. The results emphasize the strong influence of the confinement on the flow structure.


Author(s):  
Tom Tanneberger ◽  
Thoralf G. Reichel ◽  
Oliver Krüger ◽  
Steffen Terhaar ◽  
Christian Oliver Paschereit

In the present study numerical results of simulations, using RANS and LES, of the non-reacting flow in a swirl-stabilized burner are presented. The burner was developed for lean premixed combustion with high fuel flexibility at low emissions. An important challenge for a fuel-flexible, low emission combustor is the prevention of flashback for fuels of high reactivity, such as hydrogen, without compromising on lean blow out safety and mixing quality. Flashback safety can be increased by a sufficiently high and uniform axial velocity at the end of the mixing tube. In the investigated combustor the velocity deficit in the center of the mixing tube, which results from the swirl, is prevented by a non-swirling axial jet. In a parametric study the effect of different amounts of axial injection on the flow field is investigated. The results are validated with experimental data, gained from PIV measurements in a vertical water tunnel. It is shown that the mean flow field can be well captured by steady-state RANS simulations using a realizable k-ε turbulence model. The most suitable geometry is identified and, subsequently, transient LES simulations are conducted. The dynamic flow field characteristics are investigated. It was found that in spite of the high swirl, the flow field is quite stable and no dominating frequency is detected. The flow field of the swirling flow in the combustion chamber can be captured well using LES. Furthermore, the mixing quality is compared to the experiments, which are performed in a water tunnel. In contrast to the RANS simulation, the LES can qualitatively capture the spatial unmixedness observed from experimental data. All simulations were conducted using water as fluid.


Author(s):  
Bassam Mohammad ◽  
San-Mou Jeng ◽  
M. Gurhan Andac

Transverse dilution jets are widely used in combustion systems. The current research provides a detailed study of the primary jets of a realistic annular combustion chamber sector. The combustor sector comprises an aerodynamic diffuser, inlet cowl, combustion dome, primary dilution jets, secondary dilution jets, and cooling strips to provide convective cooling to the liner. The chamber contracts toward the end to fit the turbine nozzle ring. 2D PIV is employed at an atmospheric pressure drop of 4% (isothermal) to delineate the flow field characteristics. The laser is introduced to the sector through the exit flange. The interaction between the primary jets and the swirling flow as well as the sensitivity of the primary jets to perturbations is discussed. The perturbation study includes: effect of partially blocking the jets, one at a time, the effect of blocking the convective cooling holes, placed underneath the primary jets and shooting perpendicular to it. In addition, the effect of reducing the size of the primary jets as well as off-centering the primary jets is explained. Moreover, PIV is employed to study the flow field with and without fuel injection at four different fuel flow rates. The results show that the flow field is very sensitive to perturbations. The cooling air interacts with the primary jet and influences the flow field although the momentum ratio has a 100:1 order of magnitude. The results also show that the big primary jets dictate the flow field in the primary zone as well as the secondary zone. However, relatively smaller jets mainly influence the primary combustion zone because most of the jet is recirculated back to the CRZ. Also, the jet penetration is reduced with 25% and 11.5% corresponding to a 77% and 62% reduction of the jet’s area, respectively. The study indicates the presence of a critical jet diameter beyond which the dilution jets have minimum impact on the secondary region. The jet off-centering shows significant effect on the flow field though it is in the order of 0.4 mm. The fuel injection is also shown to influence the flow field as well as the primary jets angle. High fuel flow rate is shown to have very strong impact on the flow field and thus results in a strong distortion of both the primary and secondary zones. The results provide useful methods to be used in the flow field structure control. Most of the effects shown are attributed to the difference in jet opposition. Hence, the results are applicable to reacting flow.


2018 ◽  
Vol 846 ◽  
pp. 210-239
Author(s):  
Vinicius M. Sauer ◽  
Fernando F. Fachini ◽  
Derek Dunn-Rankin

Tubular flames represent a canonical combustion configuration that can simplify reacting flow analysis and also be employed in practical power generation systems. In this paper, a theoretical model for non-premixed tubular flames, with delivery of liquid fuel through porous walls into a swirling flow field, is presented. Perturbation theory is used to analyse this new tubular flame configuration, which is the non-premixed equivalent to a premixed swirl-type tubular burner – following the original classification of premixed tubular systems into swirl and counterflow types. The incompressible viscous flow field is modelled with an axisymmetric similarity solution. Axial decay of the initial swirl velocity and surface mass transfer from the porous walls are considered through the superposition of laminar swirling flow on a Berman flow with uniform mass injection in a straight pipe. The flame structure is obtained assuming infinitely fast conversion of reactants into products and unity Lewis numbers, allowing the application of the Shvab–Zel’dovich coupling function approach.


Sign in / Sign up

Export Citation Format

Share Document