Numerical Investigation of the Flow Field and Mixing in a Swirl-Stabilized Burner With a Non-Swirling Axial Jet

Author(s):  
Tom Tanneberger ◽  
Thoralf G. Reichel ◽  
Oliver Krüger ◽  
Steffen Terhaar ◽  
Christian Oliver Paschereit

In the present study numerical results of simulations, using RANS and LES, of the non-reacting flow in a swirl-stabilized burner are presented. The burner was developed for lean premixed combustion with high fuel flexibility at low emissions. An important challenge for a fuel-flexible, low emission combustor is the prevention of flashback for fuels of high reactivity, such as hydrogen, without compromising on lean blow out safety and mixing quality. Flashback safety can be increased by a sufficiently high and uniform axial velocity at the end of the mixing tube. In the investigated combustor the velocity deficit in the center of the mixing tube, which results from the swirl, is prevented by a non-swirling axial jet. In a parametric study the effect of different amounts of axial injection on the flow field is investigated. The results are validated with experimental data, gained from PIV measurements in a vertical water tunnel. It is shown that the mean flow field can be well captured by steady-state RANS simulations using a realizable k-ε turbulence model. The most suitable geometry is identified and, subsequently, transient LES simulations are conducted. The dynamic flow field characteristics are investigated. It was found that in spite of the high swirl, the flow field is quite stable and no dominating frequency is detected. The flow field of the swirling flow in the combustion chamber can be captured well using LES. Furthermore, the mixing quality is compared to the experiments, which are performed in a water tunnel. In contrast to the RANS simulation, the LES can qualitatively capture the spatial unmixedness observed from experimental data. All simulations were conducted using water as fluid.

Author(s):  
Bassam Mohammad ◽  
San-Mou Jeng ◽  
M. Gurhan Andac

Transverse dilution jets are widely used in combustion systems. The current research provides a detailed study of the primary jets of a realistic annular combustion chamber sector. The combustor sector comprises an aerodynamic diffuser, inlet cowl, combustion dome, primary dilution jets, secondary dilution jets and cooling strips to provide convective cooling to the liner. The chamber contracts toward the end to fit the turbine nozzle ring. 2D PIV is employed at an atmospheric pressure drop of 4% (isothermal) to delineate the flow field characteristics. The laser is introduced to the sector through the exit flange. The interaction between the primary jets and the swirling flow as well as the sensitivity of the primary jets to perturbations is discussed. The perturbation study includes: effect of partially blocking the jets, one at a time, the effect of blocking the convective cooling holes, placed underneath the primary jets and shooting perpendicular to it. In addition, the effect of reducing the size of the primary jets as well as off-centering the primary jets is explained. Moreover, PIV is employed to study the flow field with and without fuel injection at four different fuel flow rates. The results show that the flow field is very sensitive to perturbations. The cooling air interacts with the primary jet and influences the flow field although the momentum ratio has a 100:1 order of magnitude. The results also show that the big primary jets dictate the flow field in the primary zone as well as the secondary zone. However, relatively smaller jets mainly influence the primary combustion zone because most of the jet is recirculated back to the CRZ. Also, the jet penetration is reduced with 25% and 11.5% corresponding to a 77% and 62% reduction of the jet’s area respectively. The study indicates the presence of a critical jet diameter beyond which the dilution jets have minimum impact on the secondary region. The jet off-centering shows significant effect on the flow field though it is in the order of 0.4 mm. The fuel injection is also shown to influence the flow field as well as the primary jets angle. High fuel flow rate is shown to have very strong impact on the flow field and thus results in a strong distortion of both the primary and secondary zones. The results provide useful methods to be used in the flow field structure control. Most of the effects shown are attributed to the difference in jet opposition. Hence, the results are applicable to reacting flow.


Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

An experimental study has been conducted to study the effect of the dome geometry on the aerodynamic characteristics of a non-reacting flow field. The flow was generated by a counter-rotating radial-radial swirler consisting of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. The dome geometry was modified by introducing dome expansion angles of 60° and 45° with respect to the swirler centerline, in addition to the baseline case of sudden expansion (90°). The flow downstream of the swirler is confined by a 50.8mm × 50.8mm × 304.8mm (2″ × 2″ × 12″) plexiglass chamber. A two-component laser doppler velocimetry (LDV) system was used to measure the velocities in the flow field. The dome geometry is seen to have a clear impact on mean swirling flow structure near the swirler exit rather than the downstream flow field. For the configurations with 60° and 45° expansion, no corner recirculation zone is observed and the swirling flow structure is asymmetric due to the non-axisymmetric dome geometry. The cross-section area of central recirculation zone is larger for dome geometry with 60° expansion angle, as compared to the 90° and 45° cases. The configurations with 60° and 45° expansion have higher magnitudes of negative velocity inside the core of central recirculation zone, as compared to the configuration with 90° expansion angle.


Author(s):  
Bassam Mohammad ◽  
San-Mou Jeng ◽  
M. Gurhan Andac

Transverse dilution jets are widely used in combustion systems. The current research provides a detailed study of the primary jets of a realistic annular combustion chamber sector. The combustor sector comprises an aerodynamic diffuser, inlet cowl, combustion dome, primary dilution jets, secondary dilution jets, and cooling strips to provide convective cooling to the liner. The chamber contracts toward the end to fit the turbine nozzle ring. 2D PIV is employed at an atmospheric pressure drop of 4% (isothermal) to delineate the flow field characteristics. The laser is introduced to the sector through the exit flange. The interaction between the primary jets and the swirling flow as well as the sensitivity of the primary jets to perturbations is discussed. The perturbation study includes: effect of partially blocking the jets, one at a time, the effect of blocking the convective cooling holes, placed underneath the primary jets and shooting perpendicular to it. In addition, the effect of reducing the size of the primary jets as well as off-centering the primary jets is explained. Moreover, PIV is employed to study the flow field with and without fuel injection at four different fuel flow rates. The results show that the flow field is very sensitive to perturbations. The cooling air interacts with the primary jet and influences the flow field although the momentum ratio has a 100:1 order of magnitude. The results also show that the big primary jets dictate the flow field in the primary zone as well as the secondary zone. However, relatively smaller jets mainly influence the primary combustion zone because most of the jet is recirculated back to the CRZ. Also, the jet penetration is reduced with 25% and 11.5% corresponding to a 77% and 62% reduction of the jet’s area, respectively. The study indicates the presence of a critical jet diameter beyond which the dilution jets have minimum impact on the secondary region. The jet off-centering shows significant effect on the flow field though it is in the order of 0.4 mm. The fuel injection is also shown to influence the flow field as well as the primary jets angle. High fuel flow rate is shown to have very strong impact on the flow field and thus results in a strong distortion of both the primary and secondary zones. The results provide useful methods to be used in the flow field structure control. Most of the effects shown are attributed to the difference in jet opposition. Hence, the results are applicable to reacting flow.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2018 ◽  
Vol 846 ◽  
pp. 210-239
Author(s):  
Vinicius M. Sauer ◽  
Fernando F. Fachini ◽  
Derek Dunn-Rankin

Tubular flames represent a canonical combustion configuration that can simplify reacting flow analysis and also be employed in practical power generation systems. In this paper, a theoretical model for non-premixed tubular flames, with delivery of liquid fuel through porous walls into a swirling flow field, is presented. Perturbation theory is used to analyse this new tubular flame configuration, which is the non-premixed equivalent to a premixed swirl-type tubular burner – following the original classification of premixed tubular systems into swirl and counterflow types. The incompressible viscous flow field is modelled with an axisymmetric similarity solution. Axial decay of the initial swirl velocity and surface mass transfer from the porous walls are considered through the superposition of laminar swirling flow on a Berman flow with uniform mass injection in a straight pipe. The flame structure is obtained assuming infinitely fast conversion of reactants into products and unity Lewis numbers, allowing the application of the Shvab–Zel’dovich coupling function approach.


2015 ◽  
Vol 789-790 ◽  
pp. 477-483
Author(s):  
A.R. Norwazan ◽  
M.N. Mohd Jaafar

This paper is presents numerical simulation of isothermal swirling turbulent flows in a combustion chamber of an unconfined burner. Isothermal flows of with three different swirl numbers, SN of axial swirler are considered to demonstrate the effect of flow axial velocity and tangential velocity to define the center recirculation zone. The swirler is used in the burner that significantly influences the flow pattern inside the combustion chamber. The inlet velocity, U0 is 30 m/s entering into the burner through the axial swirler that represents a high Reynolds number, Re to evaluate the differences of SN. The significance of center recirculation zone investigation affected by differences Re also has been carried out in order to define a good mixing of air and fuel. A numerical study of non-reacting flow into the burner region is performed using ANSYS Fluent. The Reynolds–Averaged Navier–Stokes (RANS) realizable k-ε turbulence approach method was applied with the eddy dissipation model. An attention is focused in the flow field behind the axial swirler downstream that determined by transverse flow field at different radial distance. The results of axial and tangential velocity were normalized with the U0. The velocity profiles’ behaviour are obviously changes after existing the swirler up to x/D = 0.3 plane. However, their flow patterns are similar for all SN after x/D = 0.3 plane towards the outlet of a burner.


2021 ◽  
Vol 62 (9) ◽  
Author(s):  
Jason Appelbaum ◽  
Duncan Ohno ◽  
Ulrich Rist ◽  
Christoph Wenzel

AbstractUnsteady, 3D particle tracking velocimetry (PTV) data are applied as an inlet boundary condition in a direct numerical simulation (DNS). The considered flow case is a zero pressure gradient (ZPG) turbulent boundary layer (TBL) flow over a flat plate. The study investigates the agreement between the experimentally measured flow field and its simulated counterpart with a hybrid 3D inlet region. The DNS field inherits a diminishing contribution from the experimental field within the 3D inlet region, after which it is free to spatially evolve. Since the measurement does not necessarily provide a spectrally complete description of the turbulent field, the spectral recovery of the flow field is analyzed as the TBL evolves. The study summarizes the pre-processing methodology used to bring the experimental data into a form usable by the DNS as well as the numerical method used for simulation. Spectral and mean flow analysis of the DNS results show that turbulent structures with a characteristic length on the order of one average tracer particle nearest neighbor radius $${\bar{r}}_{\text {NN}}$$ r ¯ NN or greater are well reproduced and stay correlated to the experimental field downstream of the hybrid inlet. For turbulent scales smaller than $${\bar{r}}_{\text {NN}}$$ r ¯ NN , where experimental data are sparse, a relatively quick redevelopment of previously unresolved turbulent energy is seen. The results of the study indicate applicability of the approach to future DNS studies in which specific upstream or far field boundary conditions (BCs) are required and may provide the utility of decreasing high initialization costs associated with conventional inlet BCs. Graphic abstract


Author(s):  
J. F. Carrotte ◽  
C. Batchelor-Wylam

Measurements have been made on the non-reacting flow field issuing from a Lean Premixed module (LPM) that incorporates a radial swirler, mixing duct section and nozzle. The geometry contains many features that are thought typical of LPM systems in which gaseous fuel is introduced into a swirling flow at a discrete number of locations. Hot wire anemometry measurements have been used to define the velocity field issuing from the module whilst additional experiments have utilised heated air to simulate gaseous fuel. In this way temperature measurements, using Constant Current Anemometry, have been used to infer the fuel-air mixture field issuing from the module. The velocity data indicates a highly turbulent flow field and the basic spectral characteristics of this velocity field are defined. In addition, within certain regions a strong periodic flow component is observed and is indicative of the instabilities typically associated with swirling flows. The spectral characteristics of the mixture field are also presented and the method by which the mixture and velocity spectra should be compared is outlined. Using this method the measurements indicate the basic spectral characteristics are virtually identical and, furthermore, a periodic fluctuation in the mixture field is also observed. For these types of LPM systems fluctuations in the mixture and velocity fields are therefore strongly correlated. In addition it is shown that the flow fields are dominated by the relatively large time and length scales associated with the main velocity field rather than, say, the much smaller velocity and mixing scales associated with the individual fuel jets.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2161 ◽  
Author(s):  
Zhenlong Fang ◽  
Qiang Wu ◽  
Mengda Zhang ◽  
Haoyang Liu ◽  
Pan Jiang ◽  
...  

Pulsed waterjet can break rocks effectively by taking advantage of the water hammer effect, and is thus widely used in mining, petroleum, and natural gas fields. With the aim to further clarify the flow field characteristics of pulsed jets induced by a Helmholtz oscillator, large eddy simulation was conducted under different operating pressures. The velocity distribution, mean flow field, and the coherent structure were examined using the oscillators of different cavity lengths and diameters. The results clearly showed that the major frequency of jet pulsation gradually increased with the increase of operating pressure. A stable periodic velocity core was formed at the outlet of the Helmholtz oscillator, while the external flow field was subjected to periodic impact. As a result, the ambient fluid was strongly entrained into the jet beam. With the increase of the cavity length, the length of the core segment decreased while the energy loss caused by the cavity increased, which was also accompanied by a rapid attenuation of the axial velocity at the jet outlet. The coherent structure of the jet in the oscillator with small cavity diameter was more disordered near the nozzle outlet, and the vortex scale was larger. The effect of cavity diameter can be reflected in the feedback modulation of the jet in the cavity. Compared with the conical nozzle, the length of the core section of the jet was shorter, but the jet had better bunching, a smaller diffusion angle, and better mixing performance. These results provide a further understanding of the characteristics of pulsed water jet for better utilizations in the fields of energy exploitation.


Sign in / Sign up

Export Citation Format

Share Document