Effect of Chamber Length With Converging Exhaust on Swirling Flow Field Characteristics of a Counter-Rotating Radial-Radial Swirler

Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

An experimental study has been conducted to examine the effect of chamber length on the aerodynamic characteristics of an enclosed, non-reacting, swirling, flow field. The swirling flow was generated by a counter-rotating radial-radial swirler consisting of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. The enclosures used were square cross-section chambers of differing lengths. The internal cross section of all chambers was 50.8 mm × 50.8 mm (2 inch × 2 inch). 3 different lengths of chamber used for the tests were 76.2 mm (3″), 101.6 mm (4″), and 152.4 mm (6″) respectively. A nozzle was used at the downstream end of the enclosure to ensure the absence of reverse flow back to test chamber and to simulate the area reduction in typical combustor. The nozzle reduced the cross-section area from 50.8 mm × 50.8 mm (2″ × 2″) to 22.2 mm × 22.2 mm (0.875″ × 0.875″) via 45° slope. A two-component laser doppler velocimetry (LDV) system was used to measure the velocities in the flow fields. The chamber length has been observed to have a clear influence on the mean and turbulent velocity profile near the exit of swirler. However, this effect is not as evident further downstream in the flow field. For the short chamber length, higher values of axial and tangential velocities were observed in the swirling jet due to the proximity of the downstream nozzle to the swirler. For this chamber length, higher turbulence intensities were observed in the swirling jet and inside center toroidal recirculation zone. The magnitudes of the swirling jet velocity and the turbulence intensities decreased with an increase in the chamber length. Two counter-rotating flows could merge more complete in the exit of swirler with the chamber length decreasing.

Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

A series of experiments have been conducted to study the aerodynamic characteristics of a confined swirling flow generated by multiple rad-rad swirlers arranged linearly. The rad-rad swirlers used in this study are identical, and consist of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. A two-component Laser Doppler Velocimetry (LDV) system was employed to measure the velocity in the flow field. Initial measurements were conducted on unconfined and confined flow generated by a single swirler to serve as the baseline reference for the multi-swirler arrangements. Tests were conducted for 3 and 5 swirlers arranged in a line, with a spacing of 2D between the swirler centers, where D is the swirler exit diameter. An additional 5 swirler configuration was tested, where the exit plane of the center swirler was shifted 3.2 mm (1/8 inch) in the streamwise direction. The flow field generated by the multi-swirler arrangement is very complex, due to the interaction between the swirling jets of adjacent swirlers. The number of swirlers is seen to have a clear impact on the entire flow structure, as well as each recirculation zone. For the 3 swirler arrangement, a weak CTRZ is observed for the center swirler, whereas strong CTRZs are observed for the two outer swirlers. For the 5 swirler arrangement, the CTRZ pattern for the 3 inner swirlers is the same strong-weak-strong as seen for the 3 swirler arrangements, with weak CTRZs observed for the two outer swirlers. Higher interaction between swirlers is observed for the 5 swirler arrangement, as compared to the case with 3 swirlers. Since the swirlers are identical, the region between swirlers features merging of two opposing swirling jets, producing high turbulence intensity in the near field region. For the case with the offset center swirler, the swirling jet from this swirler did not merge with its neighbors in the near field region. This resulted in strong CTRZ for the center swirler, accompanied by weaker CTRZs at its immediate neighbors, which is reverse of the CTRZ strength pattern observed for the initial 5 swirler arrangement.


Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

An experimental study has been conducted to study the effect of the dome geometry on the aerodynamic characteristics of a non-reacting flow field. The flow was generated by a counter-rotating radial-radial swirler consisting of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. The dome geometry was modified by introducing dome expansion angles of 60° and 45° with respect to the swirler centerline, in addition to the baseline case of sudden expansion (90°). The flow downstream of the swirler is confined by a 50.8mm × 50.8mm × 304.8mm (2″ × 2″ × 12″) plexiglass chamber. A two-component laser doppler velocimetry (LDV) system was used to measure the velocities in the flow field. The dome geometry is seen to have a clear impact on mean swirling flow structure near the swirler exit rather than the downstream flow field. For the configurations with 60° and 45° expansion, no corner recirculation zone is observed and the swirling flow structure is asymmetric due to the non-axisymmetric dome geometry. The cross-section area of central recirculation zone is larger for dome geometry with 60° expansion angle, as compared to the 90° and 45° cases. The configurations with 60° and 45° expansion have higher magnitudes of negative velocity inside the core of central recirculation zone, as compared to the configuration with 90° expansion angle.


Author(s):  
M. P. Huijts ◽  
A. A. V. Perpignan ◽  
A. G. Rao

Abstract The flameless combustion (FC) regime is a promising technology for gas turbines, as it potentially yields lower NOx emissions while maintaining high combustion efficiencies. However, the application of FC to gas turbines is still challenging as required conditions for its occurrence depend on several factors such as reactants mixing, residence times, heat losses, and chemical time-scales. Since the mixing of the reactants and incoming fresh air-fuel mixture plays an important role in FC, the aerodynamic characteristics of the combustor are instrumental in determining the combustor emission performance. Focusing on the aerodynamic characteristics, this paper is dedicated to the visualization and description of the flow inside a jet-based combustor designed to operate under FC. The cylindrical combustor has a FLOX® burner head with 12 concentrically placed nozzles, while an acrylic cylinder allowed full optical access to the flow field. The investigation was performed for non-reactive flow. Using Particle Image Velocimetry and a Reynolds-averaged Navier-Stokes CFD analysis, the flow was visualized and modelled. The simulations were run with the Standard and Realizable k-ε (SKE and RKE, respectively), as well as a Reynolds Stress turbulence model. The effect of modifying the SKE model C1ε constant was also investigated. In the experimental campaign, the influence of combustion chamber length, nozzle diameter, and jet velocity were investigated with respect to flow structure, recirculation ratios and entrainment behavior. The results show that the flow structure is mainly dependent on nozzle diameters, while the jet momentum is the correct parameter to assess the recirculation impact of a certain jet flow. The numerical investigation shows that the turbulence intensity at the boundaries is an important parameter to accurately simulate the jet spreading. None of the used turbulence models fully represented the flow field. Nonetheless, the SKE model with model C1ε = 1.44 was the best at representing the jets penetration and vortex core positions, and the recirculation ratio values predicted by it were in good agreement.


Author(s):  
Yu Zhou ◽  
Yuan Huang ◽  
Zhongqiang Mu

To study the influence of inlet turbulence on the prediction of flow structure in practical aeroengine combustor, large eddy simulation with dynamic Smagorinsky subgrid model is used to explore the complex unsteady flow field in a single burner of a typical aeroengine combustor with two-stage counter-rotating swirler. The complex geometric configuration including all film cooling holes is fully simulated without any conventional simplification in order to reduce the modeling errors. First, unsteady process that flow developing from static to statistically stationary state is fully simulated under laminar inlet condition to obtain a fundamental understanding of flow characteristics in the combustor. Afterwards, synthetic eddy method is utilized to generate a turbulent inlet condition so that a perturbation with about 5% turbulence intensity is superimposed to the inlet plane. Simulation result shows that for the laminar inflow case, flow separation occurs in the near-wall region of the diffusion section, inducing a boundary layer transition and consequently introducing turbulence with nonuniformity in space before the swirler. In contrast, synthesized inflow generated under turbulent inlet condition by synthetic eddy method is more spatially homogeneous. Time-averaged flow field inside the swirler cup reveals that turbulent inflow ultimately causes the swirling flow with higher rotating speed in central region and more uniform distribution along the circumferential direction. It also enhances the transverse jet flow from primary holes and reverse flow in the central recirculation zone, and makes streamlines corresponding to the recirculation vortices more symmetrical on central profile. Maximum recirculating velocity predicted in central recirculation zone is −27.65 m/s and −17.86 m/s in turbulent and laminar case respectively, and corresponding total pressure recovery coefficient is 96.03% and 96.81%.


Author(s):  
Dipanjay Dewanji ◽  
Arvind G. Rao ◽  
Mathieu Pourquie ◽  
Jos P. van Buijtenen

The Lean Direct Injection (LDI) combustion concept has been of active interest due to its potential for low emissions under a wide range of operational conditions. This might allow the LDI concept to become the next generation gas-turbine combustion scheme for aviation engines. Nevertheless, the underlying unsteady phenomena, which are responsible for low emissions, have not been widely investigated. This paper reports a numerical study on the characteristics of the non-reacting and reacting flow field in a single-element LDI combustor. The solution for the non-reacting flow captures the essential aerodynamic flow characteristics of the LDI combustor, such as the reverse flow regions and the complex swirling flow structures inside the swirlers and in the neighborhood of the combustion chamber inlet, with reasonable accuracy. A spray model is introduced to simulate the reacting flow field. The reaction of the spray greatly influences the gas-phase velocity distribution. The heat release effect due to combustion results in a significantly stronger and compact reverse flow zone as compared to that of the non-reacting case. The inflow spray is specified by the Kelvin-Helmholtz breakup model, which is implemented in the Reynolds-Averaged Navier Stokes (RANS) code. The results show a strong influence of the high swirling flow field on liquid droplet breakup and flow mixing process, which in turn could explain the low-emission behavior of the LDI combustion concept.


2014 ◽  
Vol 69 (2) ◽  
Author(s):  
Mohamad Shaiful Ashrul Ishak ◽  
Mohammad Nazri Mohd Jaafar

The main purpose of this paper is to study the Computational Fluid Dynamics (CFD) prediction on CO-NO formation production inside the combustor close to burner throat while varying the swirl angle of the radial swirler. Air swirler adds sufficient swirling to the inlet flow to generate central recirculation region (CRZ) which is necessary for flame stability and fuel air mixing enhancement. Therefore, designing an appropriate air swirler is a challenge to produce stable, efficient and low emission combustion with low pressure losses. A liquid fuel burner system with different radial air swirler with 280 mm inside diameter combustor of 1000 mm length has been investigated. Analysis were carried out using four different radial air swirlers having 30°, 40°, 50° and 60° vane angles. The flow behavior was investigated numerically using CFD solver Ansys Fluent. This study has provided characteristic insight into the formation and production of CO and pollutant NO inside the combustion chamber. Results show that the swirling action is augmented with the increase in the swirl angle, which leads to increase in the center core reverse flow, therefore reducing the CO and pollutant NO formation. The outcome of this work will help in finding out the optimum swirling angle which will lead to less emission.  


Author(s):  
Hong Yin

In advanced gas turbine technology, lean premixed combustion is an effective strategy to reduce peak temperature and thus, NO[Formula: see text] emissions. The swirler is adopted to establish recirculation flow zone, enhancing mixing and stabilizing the flame. Therefore, the swirling flow is dominant in the combustor flow field and has impact on the vane. This paper mainly investigates the swirling flow effect on the turbine first stage vane cooling system by conducting a group of numerical simulations. Firstly, the numerical methods of turbulence modeling using RANS and LES are compared. The computational model of one single swirl flow field is considered. Both the RANS and LES results give reasonable recirculation zone shape. When comparing the velocity distribution, the RANS results generally match the experimental data but fail to at some local area. The LES modeling gives better results and more detailed unsteady flow field. In the second step, the RANS modeling is incorporated to investigate the vane film cooling performance under the swirling inflow boundary condition. According to the numerical results, the leading edge film cooling is largely altered by the swirling flow, especially for the swirl core-leading edge aligned case. Compared to the pressure side, the suction side film cooling is more sensitive to the swirling flow. Locally, the film cooling jet is lifted and turned by the strong swirling flow.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


Author(s):  
David John Rajendran ◽  
Vassilios Pachidis

Abstract The installed Variable Pitch Fan (VPF) reverse thrust flow field is obtained from the flow solution of an integrated airframe-engine-VPF research model for the complete reverser engagement regime during the aircraft landing run. The reverse thrust flow field indicates that the reverse flow out of the nacelle inlet is washed downstream by the freestream. Consequently, reverse flow enters the engine through the bypass nozzle from a 180° turn of the washed-down stream. This results in a region of separated flow at the nozzle lip that acts as a blockage to the reverse flow entry into the engine. To mitigate the blockage issue, a smooth guidance of the reverse flow into the engine can be achieved by using an inflatable rubber lip that would define a bell-mouth like geometric feature with a round radius at the nacelle exit. In nominal engine operation, the rubber lip would be stowed flush within the contours of the nacelle surface. The design space of the rubber lip is studied by considering different rounding radii and locations of the turn radius with respect to the nacelle trailing edge. It is observed that a rounding radius of 0.1x nacelle length is sufficient to reduce the blockage and increase the ingested reverse flow by 47% to 18% in the 140 to 40 knots landing speed range. The inflatable rubber lip represents a design modification that can improve VPF reverse thrust operation, in cases where an augmentation of reverse thrust capability is desired


Author(s):  
Hao Chang ◽  
Weidong Shi ◽  
Wei Li ◽  
Jianrui Liu ◽  
Ling Zhou ◽  
...  

In order to study the influence rule of wrap angle of blade on the internal flow field and hydraulic performance of double suction pump, 5 kinds of wrap angles of blade with 100°, 110°, 120°, 130° and 140° are designed in this paper. The turbulence model and the grid type are analyzed, the performance of ES350-575 double suction pump is obtained by employ the software CFX. The static pressure and velocity distributions in the cross-section are analyzed. Therefore, the optimal model is obtained, and the relevant external characteristic test is conducted. The result shows that the reasonable increase of the wrap angle of blade can enhance the performance of the pump effectively, which can improve the static pressure and velocity distributions of the internal flow field.


Sign in / Sign up

Export Citation Format

Share Document