Engine Design Strategy for Boundary Layer Ingesting Propulsion Systems With Multiple Non-Symmetric Engine Inlet Conditions

Author(s):  
Jonathan C. Gladin ◽  
Brian K. Kestner ◽  
Jeff S. Schutte ◽  
Dimitri N. Mavris

Boundary layer ingesting inlets for hybrid wing body aircraft have been investigated at some depth in recent years due to the theoretical potential for fuel burn savings. Such savings derive from the ingestion of a portion of the low momentum wake into the propulsor to reenergize the flow, thus yielding total power savings and reducing required block fuel burn. A potential concern for BLI is that traditional concepts such as “thrust” and “drag” become less clearly defined due to the interaction between the vehicle aerodynamics and the propulsive thrust achieved. One such interaction for the HWB concept is the lateral location of the inlet on the upper surface which determines the effective Reynolds number at the point of ingestion. This is an important factor in determining the amount of power savings achieved by the system, since the boundary layer, displacement, and momentum thicknesses are functions of the local chord length and airfoil shape which are all functions of the lateral location of the engine. This poses a design challenge for engine layouts with more than two engines as at least one or more of the total engines will be operating at a different set of changing inlet conditions throughout the flight envelope. As a result, the engine operating point and propulsive performance will be different between outboard and inboard engines at flight conditions with appreciable boundary layer influence including key flight conditions for engine design: takeoff, top of climb, and cruise. The optimal engine design strategy in terms of performance to address this issue is to design separate engines with similar thrust performance. This strategy has significant challenges such as requiring the manufacturing and certification of two different engines for one vehicle. A more practical strategy is to design a single engine that performs adequately at the different inlet conditions but may not achieve the full benefits of BLI. This paper presents a technique for cycle analysis which can account for the disparity between inlet conditions. This technique was used for two principal purposes: first to determine the effect of the inlet disparity on the performance of the system; second, to analyze the various design strategies that might mitigate the impact of this effect. It is shown that a single engine can be sized when considering both inboard and outboard engines simultaneously. Additionally, it is shown that there is a benefit to ingesting larger mass flows in the inboard engine for the case with large disparity between the engine inlets.

2021 ◽  
pp. 1-30
Author(s):  
Alejandro Castillo Pardo ◽  
Cesare A. Hall

Abstract Boundary Layer Ingestion (BLI) potentially offers significant reductions in fuel burn and pollutant emissions. The Propulsive Fuselage Concept features a fan at the back of the airframe that ingests the 360deg fuselage boundary layer. Consequently, the distortion at the fan face during cruise is close to radial. This paper aims to devise and test a fan design philosophy that is tuned to this inflow distortion. Initially a free-vortex fan design matched to clean inflow is presented. The effects of BLI on the aerodynamics of this fan are investigated. A series of design steps are then presented to develop the baseline fan into a new design matched to fuselage BLI inflow. Both fan designs have been tested within a low speed rig. The impact of the fan design changes on the aerodynamics and the performance with BLI are evaluated using the test results. This paper presents the successful application of a unique experimental facility for the analysis of BLI fuselage fans. It shows that it is possible to design a fan that accepts the radial distortion caused by fuselage BLI with a modified profile of work input. The new fan design was found to increase the work input by 4.9% and to improve the efficiency by 2.75% relative to a fan designed for clean flow. This new fan design has reduced loading near the hub to account for the incoming distortion, increased mid span loading and negative incidence towards the tip for tolerance to circumferential distortion off-design.


2014 ◽  
Vol 136 (04) ◽  
pp. 54-58
Author(s):  
Lee S. Langston

This article explains various technical aspects of the boundary layer ingestion (BLI) concept. Using BLI, airliner designs featuring close-coupled, rear-mounted turbofans are being considered, with a fuselage sculpted to sweep a large part of the fuselage boundary layer into engine inlets for reduced fuel consumption. With an engine array fuselage-centered, rather than splayed out on wings, reduced rudder control is needed in the event of a single engine outage. This reduces the size of a BLI tail assembly, saving weight and reducing drag. A near-future goal of the BLI studies is to determine if modern engine front-mounted fans can be designed to operate efficiently and stably under BLI inlet conditions. The D8 design is aimed at the huge single-aisle, narrow-body market, now dominated by the Boeing 737 and Airbus 320 families. Airframe and engine designers strive to achieve 'clean' inlet flow conditions for jet engines.


Author(s):  
Michele Marconcini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Vittorio Michelassi ◽  
Richard Pichler ◽  
...  

In low-pressure-turbines (LPT) at design point around 60–70% of losses are generated in the blade boundary layers far from end-walls, while the remaining 30%–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Increasing attention is devoted to these flow regions in industrial design processes. Experimental techniques have shed light on the mechanism that controls the growth of the secondary vortices, and scale-resolving CFD have provided a detailed insight into the vorticity generation. Along these lines, this paper discusses the end-wall flow characteristics of the T106 profile with parallel end-walls at realistic LPT conditions, as described in the experimental setup of Duden and Fottner (1997) “Influence of Taper, Reynolds Number and Mach Number on the Secondary Flow Field of a Highly Loaded Turbine Cascade”, P. I. Mech. Eng. A-J. Pow., 211 (4), pp.309–320. The simulations target first the same inlet conditions as documented in the experiments, and determines the impact of the incoming boundary layer thickness by running additional cases with modified incoming boundary layers. Calculations are carried out by both RANS, due to its continuing role as the design verification workhorse, and highly-resolved LES. Part II of the paper focuses on the loss generation associated with the secondary end-wall vortices. Entropy generation and the consequent stagnation pressure losses are analyzed following the aerodynamic investigation carried out in the companion paper. The ability of classical turbulence models generally used in RANS to discern the loss contributions of the different vortical structures is discussed in detail and the attainable degree of accuracy is scrutinized with the help of LES and the available test data. The purpose is to identify the flow features that require further modelling efforts in order to improve RANS/URANS approaches and make them able to support the design of the next generation of LPTs.


Author(s):  
Georgios Athanasakos ◽  
Nikolaos Aretakis ◽  
Alexios Alexiou ◽  
Konstantinos Mathioudakis

Abstract A modelling approach of Boundary Layer Ingesting (BLI) propulsion systems is presented. Initially, a distorted compressor model is created utilizing the parallel compressor theory to estimate the impact of inlet distortion on fan performance. Next, a BLI propulsor model is developed considering both distortion effects and reduced inlet momentum drag caused from boundary layer ingestion. Finally, a Turbo-electric Distributed Propulsion (TeDP) model is set up, consisting of the BLI propulsor model, the associated turboshaft engine model and a representation of the relevant electrical system. Each model is validated through comparison with numerical and/or experimental data. A design point calculation is carried out initially to establish propulsor key dimensions for a specified number of propulsors and assuming common inlet conditions. Parametric design point analyses are then carried out to study the influence of propulsors number and location under different inlet conditions, by varying fan design pressure ratio between 1.15 and 1.5. BLI and non BLI configurations are compared at propulsion system level to assess the BLI benefits. The results show that maximum BLI gains of 9.3% in TSFC and 4.7% in propulsive efficiency can be achieved with 16 propulsors and FPR = 1.5, compared to podded propulsors, while further benefits can be achieved by moving the propulsor array backwards in the airframe.


Author(s):  
Matteo Giovannini ◽  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Daniele Simoni ◽  
Vianney Yepmo ◽  
...  

Due to the low level of profile losses already reached in the design of modern low-pressure turbines for turbofan applications, a renewed interest is devoted to the other sources of loss, and namely to the secondary losses. At the same time, the importance of secondary losses has been reinforced by the current design trend towards high-lift profiles. A great attention, therefore, is dedicated to reliable and effective prediction methods as well as on the correct understanding of the mechanisms that drive the secondary flows. In this context, a systematic numerical and experimental campaign was carried out focusing on the impact of different inlet boundary layer (BL) profiles and considering a state-of-the-art low-pressure turbine cascade. Starting from a computational environment representative of a design standard, detailed RANS analyses were carried out in order to establish dependable guidelines for the computational setup. As a major result, such analyses also underlined the importance of the shape of the inlet BL very close to the endwall, hence suggesting tight requirements for the characterization of the experimental environment. The impact of the inlet BL profile on the secondary flow development was experimentally investigated by varying the profile shape very close to the endwall as well as on the external part with respect to a reference condition. The effects on the cascade performance were evaluated focusing on the intensity of the over-under-turning as well as on the associated losses (intensity and penetration) by measuring the span-wise distributions of flow angle and total pressure losses at the cascade exit plane. For all the inlet conditions, comparisons between CFD and experimental results are discussed. Besides providing guidelines for a proper numerical and experimental setup, the present paper underlines the importance of a detailed characterization of the inlet BL for an accurate assessment of the secondary flows. From a broader perspective, when aiming at reproducing (numerically or experimentally) a real engine environment, this suggests that an in-depth matching of the inlet profiles is crucial for reliable estimates of the secondary losses.


Author(s):  
Marios K. Karakasis ◽  
Edward M. J. Naylor ◽  
Robert J. Miller ◽  
Howard P. Hodson

This paper considers the effect of an upstream compressor stage on a compressor inter-spool duct. The duct geometry must be fixed early in the engine design process, well before the design of the upstream stages. It is therefore important that the designer has a good physical insight into how engine representative inlet conditions affect the limits of the duct design space. An experimental and computational investigation of two strutted inter-spool S-ducts was undertaken. Both were tested with and without an upstream stage present. The first duct is of a conventional axisymmetric design with a radius change to length ratio ΔR/L = 0.50. This duct is characteristic of the most extreme ducts considered in modern engine design. The second duct is of a non-axisymmetric design and is 20% shorter, ΔR/L = 0.625. This is well beyond the design limit of axi-symmetric strutted ducts. The paper shows that the presence of the upstream stage increases the duct loss by 54%. The rise in loss occurs on the hub wall and is the result of the incoming stator wakes pooling onto the hub wall, forming a row of contra-rotating streamwise vortex pairs adjacent to the hub wall. These vortices pump boundary layer fluid into the free stream, thus raising the mixing loss. In the non-axisymmetric duct an extra mechanism was observed. The streamwise vortex pairs act to ‘re-energise’ the boundary layer. This reduces strut secondary losses caused by the endwall contouring. The net result is that on the non-axisymmetric duct the presence of an upstream stage only increases the duct loss by 28%. Comparing the two ducts, it is shown that with engine representative inlet conditions, the conventional symmetric duct and 20% shorter non-axisymmetric duct have identical performance. This shows that low loss ducts can be designed which are significantly more extreme than current design limits.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Matteo Giovannini ◽  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Daniele Simoni ◽  
Vianney Yepmo ◽  
...  

Due to the low level of profile losses reached in low-pressure turbines (LPT) for turbofan applications, a renewed interest is devoted to other sources of loss, e.g., secondary losses. At the same time, the adoption of high-lift profiles has reinforced the importance of these losses. A great attention, therefore, is dedicated to reliable prediction methods and to the understanding of the mechanisms that drive the secondary flows. In this context, a numerical and experimental campaign on a state-of-the-art LPT cascade was carried out focusing on the impact of different inlet boundary layer (BL) profiles. First of all, detailed Reynolds Averaged Navier-Stokes (RANS) analyzes were carried out in order to establish dependable guidelines for the computational setup. Such analyzes also underlined the importance of the shape of the inlet BL very close to the endwall, suggesting tight requirements for the characterization of the experimental environment. The impact of the inlet BL on the secondary flow was experimentally investigated by varying the inlet profile very close to the endwall as well as on the external part of the BL. The effects on the cascade performance were evaluated by measuring the span-wise distributions of flow angle and total pressure losses. For all the inlet conditions, comparisons between Computational Fluid Dynamics (CFD) and experimental results are discussed. Besides providing guidelines for a proper numerical and experimental setup, the present paper underlines the importance of a detailed characterization of the inlet BL for an accurate assessment of the secondary flows.


Author(s):  
Razvan V. Florea ◽  
Dmytro Voytovych ◽  
Gregory Tillman ◽  
Mark Stucky ◽  
Aamir Shabbir ◽  
...  

The paper describes the aerodynamic CFD analysis that was conducted to address the integration of an embedded-engine (EE) inlet with the fan stage. A highly airframe-integrated, distortion-tolerant propulsion preliminary design study was carried out to quantify fuel burn benefits associated with boundary layer ingestion (BLI) for “N+2” blended wing body (BWB) concepts. The study indicated that low-loss inlets and high-performance, distortion-tolerant turbomachines are key technologies required to achieve a 3–5% BLI fuel burn benefit relative to a baseline high-performance, pylon-mounted, propulsion system. A hierarchical, multi-objective, computational fluid dynamics-based aerodynamic design optimization that combined global and local shaping was carried out to design a high-performance embedded-engine inlet and an associated fan stage. The scaled-down design will be manufactured and tested in NASA’s 8′×6′ Transonic Wind Tunnel. Unsteady calculations were performed for the coupled inlet and fan rotor and inlet, fan rotor and exit guide vanes. The calculations show that the BLI distortion propagates through the fan largely un-attenuated. The impact of distortion on the unsteady blade loading, fan rotor and fan stage efficiency and pressure ratio is analyzed. The fan stage pressure ratio is provided as a time-averaged and full-wheel circumferential-averaged value. Computational analyses were performed to validate the system study and design-phase predictions in terms of fan stage performance and operability. For example, fan stage efficiency losses are less than 0.5–1.5% when compared to a fan stage in clean flow. In addition, these calculations will be used to provide pretest predictions and guidance for risk mitigation for the wind tunnel test.


2017 ◽  
Vol 12 ◽  
pp. 104
Author(s):  
Petra Skolilova

The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs) are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.


Tellus B ◽  
2021 ◽  
Vol 73 (1) ◽  
pp. 1-26
Author(s):  
Piotr Sekuła ◽  
Anita Bokwa ◽  
Zbigniew Ustrnul ◽  
Mirosław Zimnoch ◽  
Bogdan Bochenek

Sign in / Sign up

Export Citation Format

Share Document