Combustion Analysis in a Micro-Gas Turbine Supplied With Bio-Fuels

Author(s):  
Maria Cristina Cameretti ◽  
Raffaele Tuccillo

The authors examine in this paper the response of a micro gas turbine (MGT) combustor when supplied with gaseous fuels from biomass treatment or solid waste pyrolysis. Actually, a sort of off-design operation is induced by the employment of low calorific value fuels both in the combustor and in the whole micro turbine system. The objective is to optimize the combustor behaviour under the point of view of combustion efficiency and pollutant control. To this aim, several solutions are experienced for a combustor fuelled with low LHV gaseous fuels derived from biomasses or solid waste treatment. An external EGR option is also considered as activated. The combustion development is analyzed by a combined approach based on the partially stirred reactor hypothesis and on the flamelet concept within a CFD simulation workbench.

Author(s):  
Maria Cristina Cameretti ◽  
Renzo Piazzesi ◽  
Fabrizio Reale ◽  
Raffaele Tuccillo

Following their recent experiences in the search of methods for reducing the nitric oxide emissions from a micro-gas turbine, the authors discuss in this paper the results of the combustion simulation under different conditions induced by the activation of an exhaust recirculation system. The theoretical approach starts with a matching analysis of the EGR equipped micro-turbine, and then proceeds with the CFD analysis of the combustor. Different combustion models are compared in order to validate the method for NOx reduction by the point of view of a correct development of the chemically reacting process.


2012 ◽  
Vol 232 ◽  
pp. 792-796 ◽  
Author(s):  
Fabrizio Reale ◽  
Raffaela Calabria ◽  
Fabio Chiariello ◽  
Rocco Pagliara ◽  
Patrizio Massoli

The combustion efficiency and the gaseous emission of a 100 kWe MGT, designed for working with natural gas but fuelled with blends containing up to 10% of hydrogen is investigated. A critical comparison between experimental data and results of the CFD analysis of the combustor is discussed. The k-epsilon RANS turbulence model and the Finite Rate – Eddy Dissipation combustion model were used in the numerical computations. The chemical kinetic mechanisms embedded were the 2-step Westbrook and Dryer for methane oxidation, 1-step Westbrook and Dryer for hydrogen oxidation and the Zeldovich mechanism for NO formation. The experimental data and numerical computations are in agreement within the experimental accuracy for NO emissions. Regarding CO, there is a significant deviation between experimental and computational data due to the scarce predictive capability of the simple two steps kinetic mechanism was adopted. From a practical point of view, the possibility of using fuels with a similar Wobbe index was confirmed. In particular the addiction of 10 % of hydrogen to pure methane doesn’t affect the behavior of the micro gas turbine either in terms of NO or CO emissions.


Author(s):  
Feng-Shan Wang ◽  
Wen-Jun Kong ◽  
Bao-Rui Wang

A research program is in development in China as a demonstrator of combined cooling, heating and power system (CCHP). In this program, a micro gas turbine with net electrical output around 100kW is designed and developed. The combustor is designed for natural gas operation and oil fuel operation, respectively. In this paper, a prototype can combustor for the oil fuel was studied by the experiments. In this paper, the combustor was tested using the ambient pressure combustor test facility. The sensors were equipped to measure the combustion performance; the exhaust gas was sampled and analyzed by a gas analyzer device. From the tests and experiments, combustion efficiency, pattern factor at the exit, the surface temperature profile of the outer liner wall, the total pressure loss factor of the combustion chamber with and without burning, and the pollutants emission fraction at the combustor exit were obtained. It is also found that with increasing of the inlet temperature, the combustion efficiency and the total pressure loss factor increased, while the exit pattern factor coefficient reduced. The emissions of CO and unburned hydrogen carbon (UHC) significantly reduced, but the emission of NOx significantly increased.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


Author(s):  
Masato Urashima ◽  
Shuichi Torii

Biomass is a renewable energy source in that the energy that it contains comes from the sun. One of sources of biomass is municipal solid waste. The final goal of the study is to develop the combustor for the micro gas-turbine using the biomass as a fuel. Here, it is very important to remove ashes (10μm or more in diameter) in the gas because its size affects the strength or erosion of the turbine blade. The aim of the present study is to observe the combustion phenomena relevant to a mixture of waste liquid and waste oil. Emphasis is placed on the ash size which is produced from the combustion chamber developed here. It is found that the ash size obtained at the exit of the combustor is less than 10 μm.


2004 ◽  
Vol 2004.3 (0) ◽  
pp. 263-264
Author(s):  
Yuji MORI ◽  
Shigehiko KANEKO ◽  
Tatuo WATANABE ◽  
Yudai YAMASAKI ◽  
Takayuki HIKITA

1986 ◽  
Vol 108 (1) ◽  
pp. 182-190 ◽  
Author(s):  
J. G. Meier ◽  
W. S. Y. Hung ◽  
V. M. Sood

This paper describes the successful development and application of industrial gas turbines using medium-Btu gaseous fuels, including those derived from biodegradation of organic matters found in sanitary landfills and liquid sewage. The effects on the gas turbine and its combustion system of burning these alternate fuels compared to burning high-Btu fuels, along with the gas turbine development required to use alternate fuels from the point of view of combustion process, control system, gas turbine durability, maintainability and safety, are discussed.


Author(s):  
Alberto Traverso ◽  
Riccardo Scarpellini ◽  
Aristide Massardo

This paper presents the performance of the world’s first Externally Fired micro Gas Turbine (EFmGT) demonstration plant based on micro gas turbine technology. The plant was designed by Ansaldo Ricerche (ARI) s.r.l. and the Thermochemical Power Group (TPG) of the Universita` di Genova, using the in-house TPG codes TEMP (Thermoeconomic Modular Program) and TRANSEO. The plant was based on a recuperated 80 kW micro gas turbine (Elliott TA-80R), which was integrated with the externally fired cycle at the ARI laboratory. The first goal of the plant construction was the demonstration of the EFmGT system at full and part-load operations, mainly from the control point of view. The performance obtained in the field can be improved in the near future using high-temperature heat exchangers and apt external combustors, which should allow the system to operate at the actual micro gas turbine inlet temperature (900–950 °C). This paper presents the plant layout and the control system employed for regulating the microturbine power and rotational speed. The experimental results obtained by the pilot plant in early 2004 are shown: the feasibility of such a plant configuration has been demonstrated, and the control system has successfully regulated the shaft speed in all the tests performed. Finally, the plant model in TRANSEO, which was formerly used to design the control system, is shown to accurately simulate the plant behavior both at steady-state and transient conditions.


Author(s):  
M. Cadorin ◽  
M. Pinelli ◽  
A. Vaccari ◽  
R. Calabria ◽  
F. Chiariello ◽  
...  

In recent years, the interest in the research on energy production systems fed by biofuels has increased. Gaseous fuels obtained through biomass conversion processes such as gasification, pyrolysis and pyrogasification are generally defined as synthesis gas (syngas). The use of synthesis gas in small-size energy systems, such as those used for distributed micro-cogeneration, has not yet reached a level of technological maturity that could allow a large market diffusion. For this reason, further analyses (both experimental and numerical) have to be carried out to allow these technologies to achieve performance and reliability typical of established technologies based on traditional fuels. In this paper, a numerical analysis of a combustor of a 100-kW micro gas turbine fed by natural gas and biomass-derived synthesis gas is presented. The work has been developed in the framework of a collaboration between the Engineering Department of the University of Ferrara, the Istituto Motori - CNR (Napoli), and Turbec S.p A. of Corporeno di Cento (FE). The main features of the micro gas turbine Turbec T100, located at the Istituto Motori - CNR, are firstly described. A decompression and distribution system allows the feeding of the micro gas turbine with gaseous fuels characterized by different compositions. Moreover, a system of remote monitoring and control together with a data transfer system has been developed in order to set the operative parameters of the machine. The results of the tests performed under different operating conditions are then presented. Subsequently, the paper presents the numerical analysis of a model of the micro gas turbine combustor. The combustor model is validated against manufacturer performance data and experimental data with respect to steady state performance, i.e., average outlet temperature and emission levels. A sensitivity analysis on the model capability to simulate different operating conditions is then performed. The combustor model is used to simulate the combustion of a syngas, composed of different ratios of hydrogen, carbon monoxide, methane, carbon dioxide and water. The results in terms of flame displacement, temperature and emission distribution and values are analyzed and compared to the natural gas simulations. Finally, some simple modifications to the combustion chamber are proposed and simulated both with natural gas and syngas feeding.


Sign in / Sign up

Export Citation Format

Share Document