A New Risk and Reliability Model for Compressor and Pump Installations

Author(s):  
Augusto Garcia-Hernandez ◽  
Hector Delgado-Garibay ◽  
Rubén Rivera Reyes ◽  
Jose Luis Martínez ◽  
Lorenzo Martínez Gomez

Compression and pumping systems are constantly changing infrastructures, with many of the older compressor/pumping stations requiring updates, repairs and inspections to maintain safe and efficient operations. These stations operate over a wide range of pressures, flows, and working fluids under varying environmental conditions. Operating condition factors, as well as original design and materials, can significantly affect corrosion rates, structural integrity, and the flow capability of these compressor/pumping stations. Station equipment can be logically inter-related using failure trees and each critical sub-component be assigned a mean time between failure and failure probability using acceptable industry standards. These individual components are then allowed to interact to determine sub-system, system, and full station level failure probabilities. This type of analysis has historically not been utilized by the oil and gas industry but is common to other industries, such as the aerospace and nuclear power industries. This paper presents a new, comprehensive, consistent, and effective process for predicting risk, integrity, and reliability of the compressor and pump stations as well as each major subsystem and component within these stations. The model considers predefined “threats” such as mechanical, materials, electrical, third party, environment and external forces, improper maintenance, and operation of all its components; thus, typical failures modes are included in these threats. A semi-quantitative methodology with factored risk indices is applied where weighting factors are used to adjust the model with operational data. These factors are generated from reliability data extracted from the station. Comparisons between the model predictions and the reliability data will allow tuning of the weighting factors. Weighting factors are defined for each of the identified threats. The probability of failure is computed at a component level; however, it can be obtained at any level in the system based upon the specified categorization. The probability of failure is represented as a function of three factors: exposure, resistance, and mitigation, while the consequence of failure is estimated using the same approach based on three factors: receptor, hazard, and reduction. This predictive risk and failure model has been defined based on international specifications and is consistent with actual operating conditions, capacity planning, and remaining life expectations, while assuring that the stations meet the day-to-day operational demands of the system. The model also is able to predict each individual equipment failure probability within the station systems and provides for easy output of the data in graphical form for proper operating, maintenance, repair, and testing decisions.

Author(s):  
Raja Abou Ackl ◽  
Andreas Swienty ◽  
Flemming Lykholt-Ustrup ◽  
Paul Uwe Thamsen

In many places lifting systems represent central components of wastewater systems. Pumping stations with a circular wet-pit design are characterized by their relatively small footprint for a given sump volume as well as their relatively simple construction technique [1]. This kind of pumping stations is equipped with submersible pumps. These are located in this case directly in the wastewater collection pit. The waste water passes through the pump station untreated and loaded with all kind of solids. Thus, the role of the pump sump is to provide an optimal operating environment for the pumps in addition to the transportation of sewage solids. Understanding the effects of design criteria on pumping station performance is important to fulfil the wastewater transportation as maintenance-free and energy efficient as possible. The design of the pit may affect the overall performance of the station in terms of poor flow conditions inside the pit, non-uniform und disturbed inflow at the pump inlet, as well as air entrainment to the pump. The scope of this paper is to evaluate the impact of various design criteria and the operating conditions on the performance of pump stations concerning the air entrainment to the pump as well as the sedimentation inside the pit. This is done to provide documentation and recommendations of the design and operating of the station. The investigated criteria are: the inflow direction, and the operating submergence. In this context experiments were conducted on a physical model of duplex circular wet pit wastewater pumping station. Furthermore the same experiments were reproduced by numerical simulations. The physical model made of acrylic allowed to visualize the flow patterns inside the sump at various operating conditions. This model is equipped with five different inflow directions, two of them are tangential to the pit and the remaining three are radial in various positions relative to the pumps centerline. Particles were used to enable the investigation of the flow patterns inside the pit to determine the zones of high sedimentation risk. The air entrainment was evaluated on the model test rig by measuring the depth, the width and the length of the aerated region caused by the plunging water jet and by observing the air bubbles entering the pumps. The starting sump geometry called baseline geometry is simply a flat floor. The tests were done at all the possible combinations of inflow directions, submergence, working pump and operating flow. The ability of the numerical simulation to give a reliable prediction of air entrainment was assessed to be used in the future as a tool in scale series to define the scale effect as well as to analyze the flow conditions inside the sump and to understand the air entrainment phenomenon. These simulations were conducted using the geometries of the test setup after generating the mesh with tetrahedral elements. The VOF multiphase model was applied to simulate the interaction of the liquid water phase and the gaseous air phase. On the basis of the results constructive suggestions are derived for the design of the pit, as well as the operating conditions of the pumping station. At the end recommendations for the design and operating conditions are provided.


2006 ◽  
Vol 110 ◽  
pp. 221-230 ◽  
Author(s):  
Ouk Sub Lee ◽  
Dong Hyeok Kim ◽  
Seon Soon Choi

The reliability estimation of buried pipeline with corrosion defects is presented. The reliability of corroded pipeline has been estimated by using a theory of probability of failure. And the reliability has been analyzed in accordance with a target safety level. The probability of failure is calculated using the FORM (first order reliability method). The changes in probability of failure corresponding to three corrosion models and eight failure pressure models are systematically investigated in detail. It is highly suggested that the plant designer should select appropriate operating conditions and design parameters and analyze the reliability of buried pipeline with corrosion defects according to the probability of failure and a required target safety level. The normalized margin is defined and estimated accordingly. Furthermore, the normalized margin is used to predict the failure probability using the fitting lines between failure probability and normalized margin.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8620
Author(s):  
Sanaz Salehi ◽  
Kourosh Abdollahi ◽  
Reza Panahi ◽  
Nejat Rahmanian ◽  
Mozaffar Shakeri ◽  
...  

Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Du ◽  
Zixin Xiong ◽  
Luis Delgado ◽  
Weizhi Liao ◽  
Joseph Peoples ◽  
...  

AbstractThermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
George Gillard ◽  
Ian M. Griffiths ◽  
Gautham Ragunathan ◽  
Ata Ulhaq ◽  
Callum McEwan ◽  
...  

AbstractCombining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.


2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


Sign in / Sign up

Export Citation Format

Share Document