The Experimental Investigations of Centripetal Air Bleed With Tubed Vortex Reducer for Secondary Air System in Gas Turbine

Author(s):  
Xiao Chen ◽  
Ye Feng ◽  
Lijun Wu

In a modern gas turbine, the air bled through High Pressure Compressor (HPC) rotor drums from the main flow is transported radially inwards and then transferred to cool the High Pressure Turbine (HPT). The centripetal air flow creates a strong vortex, which results in huge pressure losses. This not only restricts the mass flow rate, but also reduces the cooling air pressure for down-stream hot components. Adding vortex reducer tubes to the centripetal air bleed can reduce the pressure loss and ensure the pressure and mass flow rate of the supply air. Design optimization of the tubed vortex reducer is essential in minimizing the pressure losses. This paper describes experimental investigations of different configurations of tubed vortex reducers at different rotational speeds and mass flow rates. Particular attention is paid to the shape of the drum hole, the length of the tubed vortex reducers at the same installation location, and the angles of the nozzle guide vane outlets. The core section of test rig is comprised of two steel disks, one drum rotor and stationary cases with nozzle guide vanes. It operates at representative engine parameters, such as the turbulent flow parameter, λT(0.2–1.8) and the Rossby number Ro(0.05–0.08). Three conclusions can be drawn based on the experimental results. 1) The shape of the drum hole is a key factor of the bleed system pressure loss. An oval hole configuration has less flow resistance and results in lower pressure losses compared with a circular hole design. 2) The tests prove that tubed vortex reducers are instrumental in minimizing centripetal air flow. These components effectively restrain the free vortex development and decrease the pressure losses in the cavity. 3) Basically, the flow field consists of a free vortex and a forced vortex. The length of the tube influences the flow field and the pressure losses at the inlet and outlet of the tubed vortex reducer. However, the tube length is less important when compared with the shape of drum hole.

Author(s):  
Ryo Kubo ◽  
Fumio Otomo ◽  
Yoshitaka Fukuyama ◽  
Yuhji Nakata

A CFD investigation was conducted on the total pressure loss variation for a linear nozzle guide vane cascade of a gas turbine, due to the individual film injections from the leading edge shower head, the suction surface, the pressure surface and the trailing edge slot. The results were compared with those of low speed wind tunnel experiments. A 2-D Navier-Stokes procedure for a 2-D slot injection, which approximated a row of discrete film holes, was performed to clarify the applicable limitation in the pressure loss prediction during an aerodynamic design stage, instead of a costly 3-D procedure for the row of discrete holes. In mass flow rate ratios of injection to main flow from 0% to 1%, the losses computed by the 2-D procedure agreed well with the experimental losses except for the pressure side injection cases. However, as the mass flow rate ratio was increased to 2.5%, the agreement became insufficient. The same tendency was observed in additional 3-D computations more closely modeling the injection hole shapes. The summations of both experimental and computed loss increases due to individual row injections were compared with both experimental and computed loss increases due to all-row injection with the mass flow rate ratio ranging from 0% to 7%. Each summation agreed well with each all-row injection result. Agreement between experimental and calculated results was acceptable. Therefore, the loss due to all-row injections in the design stage can be obtained by the correlations of 2-D calculated losses from individual row injections. To improve more precisely the summation prediction for the losses due to the present all-row injections, extensive research on the prediction for the losses due to the pressure side injection should be carried out.


Author(s):  
C. Buratto ◽  
A. Carandina ◽  
M. Morini ◽  
C. Pavan ◽  
M. Pinelli ◽  
...  

In this paper, a test rig for experimentation on a micro gas turbine is presented. The test rig consists of a micro gas turbine Solar T-62T-32, which, coupled with a 50 kVA alternator, can supply electrical energy to a calibrated resistive load bank. Particular attention is paid to the design of the inlet duct for the mass flow rate measurement. The basic issue was to create the intake duct for a micro gas turbine (MGT) test rig, in order to provide precise data about the mass flow rate and the thermodynamic air characteristics in the MGT inlet section. The inlet duct is also designed in order to allow future tests on inlet cooling technologies. The MGT is incorporated in a chassis for noise reduction, the dimensions of which are 540 mm (height), 570 mm (width) and 940 mm (length). These small dimensions lead to problems with the insertion of the duct. Moreover, the intake of the compressor is not axial but radial, and this means that a volute must be foreseen to convey the flux into the MGT. Several shapes of volute are analyzed in this paper, considering the effects on the pressure loss and the induction of turbulence. The challenge was to develop a fluid-dynamically efficient duct with the hindrance of a very small available space between the compressor casing, the gearbox and the fuel pipes inside the narrow noise-reduction chassis. The mass flow rate will be computed by means of the differential static pressure between the upstream and the downstream section of a Venturi tube. The choice of a Venturi was due to the fact that it produces a pressure loss lower than any other device, such as orifice plates or other nozzle shapes. Furthermore, the expected mass flow rate would lead to high fluid speeds and, as a consequence, the diameter ratio between the duct and the throat of the Venturi was chosen to be as high as possible.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

Film cooling and secondary flows are major contributors to aerodynamic losses in turbine passages. This is particularly true in low aspect ratio nozzle guide vanes where secondary flows can occupy a large portion of the passage flow field. To reduce losses, advanced cooling concepts and secondary flow control techniques must be considered. To this end, combustor bleed cooling flows introduced through an inclined slot upstream of the airfoils in a nozzle passage were experimentally investigated. Testing was performed in a large-scale, high-pressure turbine nozzle cascade comprised of three airfoils between one contoured and one flat endwall. Flow was delivered to this cascade with high-level (∼9%), large-scale turbulence at a Reynolds number based on inlet velocity and true chord length of 350,000. Combustor bleed cooling flow was injected through the contoured endwall upstream of the contouring at bleed-to-core mass flow rate ratios ranging from 0 to 6%. Measurements with triple-sensor, hot-film anemometry characterize the flow field distributions within the cascade. Total and static pressure measurements document aerodynamic losses. The influences of bleed mass flow rate on flow field mean streamwise and cross-stream velocities, turbulence distributions, and aerodynamic losses are discussed. Secondary flow features are also described through these measurements. Notably, this study shows that combustor bleed cooling flow imposes no aerodynamic penalty. This is atypical of schemes where coolant is introduced within the passage for the purpose of endwall cooling. Also, instead of being adversely affected by secondary flows, this type of cooling is able to reduce secondary flow effects.


2015 ◽  
Vol 789-790 ◽  
pp. 540-548 ◽  
Author(s):  
Cleopatra Florentina Cuciumita ◽  
Daniel Olaru ◽  
Valeriu Vilag ◽  
Ionut Porumbel ◽  
Sergiy Riznyk ◽  
...  

The paper presents the total pressure experimental measurements carried out at the Romanian Research and Development Institute for Gas Turbines COMOTI in order to determine the total pressure losses in the Inter - Turbine Duct of a two spools gas turbine, as a function of the gas turbine operating regime (mass flow rate) and rotational speed. The Inter - Turbine Duct experimental assembly has been designed, manufactured and tested at COMOTI. The total pressures were measured as a function of the pre-swirling angle, which simulates the influence of the high pressure turbine rotational speed located upstream of the Inter turbine duct in the real gas turbine, as well as for three operational regimes, without the pre-swirlers modules. The results indicate that the total pressure loss along the Inter - Turbine Duct is of maximum 0.9 %. The lowest overall total pressure loss occurs at 0o pre-swirling angle, around 0.8%, while along the ITD struts, the lowest pressure loss is obtained for a 15o pre-swirling, below 0.1%. The influence of the operating regime on the total pressure loss was found to be linearly, the pressure loss increasing with the reduced mass flow rate, between 1% and 1.9% overall, and between about 0.1% and 0.4 % along the struts.


2018 ◽  
Author(s):  
Vivek Singhal ◽  
Pradeep Ashok ◽  
Eric van Oort ◽  
Paul Park

2018 ◽  
Vol 20 (6) ◽  
pp. 624-639 ◽  
Author(s):  
Kang Song ◽  
Ben Zhao ◽  
Harold Sun ◽  
Weilin Yi

Turbocharger compressor, when fitted to a vehicle, usually operates with a curved inlet pipe which leads to distorted inlet flow field, hence deteriorating compressor flow capability. During the measurement of compressor performance, turbocharger-engine matching and controller design, the inlet flow field is, however, assumed to be uniform, which deviates from the real-world conditions. Consequently, the overall system performance could be compromised if the inlet distortion effect is ignored. To address this issue, in this article, a turbomachinery physics-based zero-dimensional model was proposed for the mass flow rate of a compressor with distorted inlet flow field due to 90° and 180° bent inlet pipe. The non-uniform flow is approximated as two-zone flow field, similar to parallel compressors, with the total pressure deviation between two zones modeled as a function of the flow velocity and pipe geometry. For each flow zone, the corresponding mass flow rate is estimated by approximating each sub-compressor as an adiabatic nozzle, where the fluid is driven by external work delivered by a compressor wheel governed by Euler’s turbomachinery equation. By including turbomachinery physics and compressor geometry information into the modeling, the model achieves high fidelity in compressor map interpretation and extrapolation, which is validated in experiments and the three-dimensional computational fluid dynamic simulation.


Author(s):  
Vaclav Slama ◽  
Lukas Mrozek ◽  
Bartolomej Rudas ◽  
David Simurda ◽  
Jindrich Hala ◽  
...  

Abstract Aerodynamic measurements and numerical simulations carried out on a model of a high-pressure valve assembly used for nozzle governing of a turbine with 135MW output are described in this paper. Aim of the study is to investigate effects of control valve’s strainers on pressure losses and unsteadiness in the flow field. It is an important task since undesirable flow fluctuations can lead to operational reliability issues. Measurements were carried out in the Aerodynamic laboratory of the Institute of Thermomechanics of the Czech Academy of Sciences (IT) where an aerodynamic tunnel is installed. Numerical simulations were carried out in the Doosan Skoda Power (DSP) Company using ANSYS software tools. The experimental model consists of one of two identical parts of the real valve assembly. It means it consists of an inlet pipeline, a stop valve, a valve chamber with two independent control valves, its diffusers and outlet pipelines. The numerical model consists of both assembly parts and includes also an A-wheel control stage in order to simulate the real turbine operating points. The different lifts of the main cone in each control valve for its useful combinations were investigated. Results were evaluated on the model with control valve’s strainers, which were historically used in order to stabilize the flow, and without them. The results of the experimental measurement were compared with the numerical results in the form of pressure losses prediction. From measured pressure fluctuations, it was found out where and for which conditions a danger of flow instabilities occurs. It can be concluded that there is a border, in terms of operating conditions, where the flow field starts to be unstable and this border is different dependent of the fact whether the control valve’s strainers are used or not. Therefore, the areas of safe and danger operational reliability can be predicted. The influence of the control valve’s strainers on the maximal amplitude of periodic fluctuations appears only for the cases when valves are highly overloaded. For normal operating conditions, there is no difference. As a result, the control valve’s strainers do not have to be used in standard applications of valve assemblies. Furthermore, a loss model for valve pressure loss estimation could be updated. Therefore, a pressure loss should be predicted with a sufficient accuracy for each new turbine bid with similar valve assemblies.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1105 ◽  
Author(s):  
Carlo Carcasci ◽  
Lapo Cheli ◽  
Pietro Lubello ◽  
Lorenzo Winchler

This paper presents an off-design analysis of a gas turbine Organic Rankine Cycle (ORC) combined cycle. Combustion turbine performances are significantly affected by fluctuations in ambient conditions, leading to relevant variations in the exhaust gases’ mass flow rate and temperature. The effects of the variation of ambient air temperature have been considered in the simulation of the topper cycle and of the condenser in the bottomer one. Analyses have been performed for different working fluids (toluene, benzene and cyclopentane) and control systems have been introduced on critical parameters, such as oil temperature and air mass flow rate at the condenser fan. Results have highlighted similar power outputs for cycles based on benzene and toluene, while differences as high as 34% have been found for cyclopentane. The power output trend with ambient temperature has been found to be influenced by slope discontinuities in gas turbine exhaust mass flow rate and temperature and by the upper limit imposed on the air mass flow rate at the condenser as well, suggesting the importance of a correct sizing of the component in the design phase. Overall, benzene-based cycle power output has been found to vary between 4518 kW and 3346 kW in the ambient air temperature range considered.


Author(s):  
K. V. L. Narayana Rao ◽  
N. Ravi Kumar ◽  
G. Ramesha ◽  
M. Devathathan

Can type combustors are robust, with ease of design, manufacturing and testing. They are extensively used in industrial gas turbines and aero engines. This paper is mainly based on the work carried out in designing and testing a can type combustion chamber which is operated using JET-A1 fuel. Based on the design requirements, the combustor is designed, fabricated and tested. The experimental results are analysed and compared with the design requirements. The basic dimensions of the combustor, like casing diameter, liner diameter, liner length and liner hole distribution are estimated through a proprietary developed code. An axial flow air swirler with 8 vanes and vane angle of 45 degree is designed to create a re-circulation zone for stabilizing the flame. The Monarch 4.0 GPH fuel nozzle with a cone angle of 80 degree is used. The igniter used is a high energy igniter with ignition energy of 2J and 60 sparks per minute. The combustor is modelled, meshed and analysed using the commercially available ansys-cfx code. The geometry of the combustor is modified iteratively based on the CFD results to meet the design requirements such as pressure loss and pattern factor. The combustor is fabricated using Ni-75 sheet of 1 mm thickness. A small combustor test facility is established. The combustor rig is tested for 50 Hours. The experimental results showed a blow-out phenomenon while the mass flow rate through the combustor is increased beyond a limit. Further through CFD analysis one of the cause for early blow out is identified to be a high mass flow rate through the swirler. The swirler area is partially blocked and many configurations are analysed. The optimum configuration is selected based on the flame position in the primary zone. The change in swirler area is implemented in the test model and further testing is carried out. The experimental results showed that the blow-out limit of the combustor is increased to a good extent. Hence the effect of swirler flow rate on recirculation zone length and flame blow out is also studied and presented. The experimental results showed that the pressure loss and pattern factor are in agreement with the design requirements.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Jojomon Joseph ◽  
Danish Rehman ◽  
Michel Delanaye ◽  
Gian Luca Morini ◽  
Rabia Nacereddine ◽  
...  

Miniaturized heat exchangers are well known for their superior heat transfer capabilities in comparison to macro-scale devices. While in standard microchannel systems the improved performance is provided by miniaturized distances and very small hydraulic diameters, another approach can also be followed, namely, the generation of local turbulences. Localized turbulence enhances the heat exchanger performance in any channel or tube, but also includes an increased pressure loss. Shifting the critical Reynolds number to a lower value by introducing perturbators controls pressure losses and improves thermal efficiency to a considerable extent. The objective of this paper is to investigate in detail collector performance based on reduced-order modelling and validate the numerical model based on experimental observations of flow maldistribution and pressure losses. Two different types of perturbators, Wire-net and S-shape, were analyzed. For the former, a metallic wire mesh was inserted in the flow passages (hot and cold gas flow) to ensure stiffness and enhance microchannel efficiency. The wire-net perturbators were replaced using an S-shaped perturbator model for a comparative study in the second case mentioned above. An optimum mass flow rate could be found when the thermal efficiency reaches a maximum. Investigation of collectors with different microchannel configurations (s-shaped, wire-net and plane channels) showed that mass flow rate deviation decreases with an increase in microchannel resistance. The recirculation zones in the cylindrical collectors also changed the maldistribution pattern. From experiments, it could be observed that microchannels with S-shaped perturbators shifted the onset of turbulent transition to lower Reynolds number values. Experimental studies on pressure losses showed that the pressure losses obtained from numerical studies were in good agreement with the experiments (<4%).


Sign in / Sign up

Export Citation Format

Share Document