Forced Response Analysis of Supercritical CO2 Radial Inflow Turbine Designed for Concentrating Solar Power

Author(s):  
Mohsen Modir Shanechi ◽  
Martin Veidt ◽  
Kamel Hooman

The forced response of high-pressure sCO2 radial-inflow turbine blisk is studied with regards to internal mistuning and inherent characteristics of supercritical Brayton cycle. A novel preliminary meanline analysis led to the generation of turbine designs for the sCO2 Brayton cycle with respect to concentrating solar power (CSP) applications. Details of mentioned study are published in a separate paper. The sCO2 turbine with a pressure ratio of 2.2 and the mild inlet temperature of 560 C is studied for rotational speed ranging between 75000 and 125000 RPM. Aiming to achieve an enhanced understanding of the fluid-structure-interaction in sCO2 radial-inflow turbine, a numerical method capable of predicting the forced responses of tuned and intentionally mistuned blisks due to aerodynamic excitation is presented. The numerical work involves the simulation of the transient flow field, and then the unsteady aerodynamic excitation forces on the blades are determined by modelling various resonance condition, including the influence of the operating condition and stator number. Performing the forced response of the structure, the transient and spatially resolved pressure distribution is used as a boundary condition in an FE model. As a result, the response amplifications of sCO2 turbines are eventually compared. The similar geometrical turbine was designed and manufactured to be operated in subcritical state for the sake of validation. The results of the subcritical turbine are derived by means of experimental and numerical analyses. To update the effect of mistuning in the FE model, blade by blade measurements using the example of a subcritical turbine blisk is performed and results of well correlated FRFs are used as inputs to adjust the blade individual Young’s modulus. The tendency of results is approved by previous works done in subcritical state. The structural damping information to be considered in the update process is taken from results of an experimental modal analysis and the aerodynamic damping induced by blade vibration is computed using an energy balance technique. It has been found that increase of the maximum forced response beyond that of the sCO2 turbine with higher rotational speed is not significant due to the existence of high pressure-density sCO2. This implies an occurrence of high aerodynamic damping which would cause a low vibrational amplitude in case of a mistuned blisk. Considering aeroelastic coupling, in supercritical turbine with small mistuning, no change of maximum response magnitudes is achieved for the fundamental bending mode; however, with large mistuning pattern, aerodynamic damping can cause significantly better response level. This result indicates considerable contrast with responses obtained from subcritical model which would be expressed by either characteristic or state of working fluid.

Author(s):  
David Hemberger ◽  
Dietmar Filsinger ◽  
Hans-Jörg Bauer

Next to excitation forces and the dynamic properties of mistuned structures the damping behavior is a key feature to evaluate the dynamic turbine blade response and thus the HCF life of a bladed disk (blisk). Just as the determination of the mistuning properties and the assessment of the vibration excitation, the evaluation of damping is also subject to uncertainty especially considering the wide operating range of a small radial turbine of a turbocharger. Since the total damping is composed of material damping, structural damping and aerodynamic damping, which are affected by parameters, like the eigenform of the vibration, the magnitude of the vibration amplitude and aerodynamic properties, the total damping can be strongly dependent on the operating conditions. The study at hand provides results from investigations that allow estimating the contribution of aerodynamic damping on the total damping. Experimental and numerical analysis of radial turbines from turbochargers for vehicular engines with variable turbine inlet vanes were performed. Measurements under different environmental conditions such as at rest and during operation, as well as unsteady CFD calculations and, coupled flow and structural calculations were carried out. A change in total damping could be found depending on the density of the surrounding gas by vibration measurements in operation on the hot gas test bench. But it was also shown that the total damping is decisively influenced by the mistuning of the structure. On one side the structural damping is varied by the variation in mistuned blade vibration amplitudes and otherwise the aerodynamic damping is influenced by the different inter blade phase angles (IBPA ) due to the mistuning, which is a symptom of geometric differences and material inhomogeneity in the wheels. Finally, the estimated total damping values were utilized in forced response calculations using a mistuned FE-model of a real turbine and excitation forces from unsteady CFD calculation. The magnitudes of the measured vibration amplitudes were compared with results from numerical analysis to validate the numerical model with focus on the investigation about the total damping. The deviation between the results was ±10% for different eigenforms and excitation orders.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Christopher E. Meinzer ◽  
Joerg R. Seume

Abstract Aerodynamic damping is the key parameter to determine the stability of vibrating blade rows in turbomachinery design. Both, the assessments of flutter and forced response vibrations need an accurate estimate of the aerodynamic damping to reduce the risk of high cycle fatigue that may result in blade loss. However, only very few attempts have been made to measure the aerodynamic damping of rotating blade rows experimentally under realistic operating conditions, but always with friction damping being present. This study closes the gap by providing an experiment in which a turbine blisk is used to eliminate friction damping at the blade roots and thereby isolate aerodynamic damping. The blades are excited acoustically and the resulting nodal diameter modes are measured using an optical tip-timing system in order to realize a fully non-intrusive setup. The measured vibration data are fitted to a single degree-of-freedom model (SDOF) to determine the aerodynamic damping. The results are in good accordance with the time-linearized CFD simulation. It is observed, however, that not only the sweep rate of the acoustic excitation but also the variation of the rotational frequency during the sweep excitation, and the excitation frequency influence the apparent damping.


Author(s):  
Martin Schwitzke ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer

Impeller blades in radial inflow turbines are not only exposed to high thermal loads and centrifugal forces. Additional dynamic stresses occur by the aerodynamic excitation of a variety of blade and disc modes and can lead to damages by fatigue. This is a critical consideration for engines with nozzle guide vanes in particular, where excitation is caused by the interaction between guide vanes and rotor blades. This leads to high excitation frequencies, which are within the range of eigenfrequencies of the stiff impeller. Previous experimental analyses provide vibration amplitude data for resonances in a radial inflow turbine equipped with three nozzle rings with varying vane numbers. The experimental data is used for validation of numerical investigations. The numerical work presented involves the simulation of the transient flow field of the entire turbine as a first step. Aerodynamic excitation forces on the blades are derived from the results for various resonance conditions. The influence of the operating condition and the vane number is pointed out. Higher speed and lower vane number increase the amplitudes of the blade force. In a second step, the transient and spatially resolved pressure distribution is used as a boundary condition in an FE model. The damping ratio is an essential parameter in order to calculate the forced response of the structure, and it is determined from the experimental data. The damping behavior is characterized and compared to ratios derived from additional experimental studies using laser vibrometry at the non-rotating turbine wheel under ambient conditions. A disparity in the damping ratios is recovered, depending on the eigenmodes and the boundary conditions. The forced response of the structure is computed using the individual damping ratios for four resonance conditions. Harmonic analyses are conducted, applying the pressure forces from CFD. The calculated amplitudes are validated with data from strain gauge measurements under operating condition. The prediction of the vibration amplitudes shows acceptable agreement to the test data with a tendency towards lower values.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order (EO) excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


2018 ◽  
Vol 2 ◽  
pp. F72OUU
Author(s):  
Victor Bicalho Civinelli de Almeida ◽  
Dieter Peitsch

A numerical aeroelastic assessment of a highly loaded high pressure compressor exposed to flow disturbances is presented in this paper. The disturbances originate from novel, inherently unsteady, pressure gain combustion processes, such as pulse detonation, shockless explosion, wave rotor or piston topping composite cycles. All these arrangements promise to reduce substantially the specific fuel consumption of present-day aeronautical engines and stationary gas turbines. However, their unsteady behavior must be further investigated to ensure the thermodynamic efficiency gain is not hindered by stage performance losses. Furthermore, blade excessive vibration (leading to high cycle fatigue) must be avoided, especially under the additional excitations frequencies from waves traveling upstream of the combustor. Two main numerical analyses are presented, contrasting undisturbed with disturbed operation of a typical industrial core compressor. The first part of the paper evaluates performance parameters for a representative blisk stage with high-accuracy 3D unsteady Reynolds-averaged Navier-Stokes computations. Isentropic efficiency as well as pressure and temperature unsteady damping are determined for a broad range of disturbances. The nonlinear harmonic balance method is used to determine the aerodynamic damping. The second part provides the aeroelastic harmonic forced response of the rotor blades, with aerodynamic damping and forcing obtained from the unsteady calculations in the first part. The influence of blade mode shapes, nodal diameters and forcing frequency matching is also examined.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Benjamin Hanschke ◽  
Arnold Kühhorn ◽  
Sven Schrape ◽  
Thomas Giersch

Objective of this paper is to analyze the consequences of borescope blending repairs on the aeroelastic behavior of a modern high pressure compressor (HPC) blisk. To investigate the blending consequences in terms of aerodynamic damping and forcing changes, a generic blending of a rotor blade is modeled. Steady-state flow parameters like total pressure ratio, polytropic efficiency, and the loss coefficient are compared. Furthermore, aerodynamic damping is computed utilizing the aerodynamic influence coefficient (AIC) approach for both geometries. Results are confirmed by single passage flutter (SPF) simulations for specific interblade phase angles (IBPA) of interest. Finally, a unidirectional forced response analysis for the nominal and the blended rotor is conducted to determine the aerodynamic force exciting the blade motion. The frequency content as well as the forcing amplitudes is obtained from Fourier transformation of the forcing signal. As a result of the present analysis, the change of the blade vibration amplitude is computed.


2008 ◽  
Vol 07 (01) ◽  
pp. 65-67
Author(s):  
CHANGPING ZOU ◽  
LI DU ◽  
XIANDE HUANG

A new type of six-bar swaying machine was put forward, which is an ingenious combination of plane multi-bar mechanism and high pressure oil cylinder. Preliminary analysis shows that this machine has many advantages, such as the torque produced by its unit weight, its small size, its light deadweight, etc. Thus it can be applied to situations that need swaying mechanism with low rotational speed and great torque. Firstly, the mechanism composition and working principle of the swaying machine were introduced. Secondly, parameterized modeling of the mechanism was carried out by utilizing software ADAMS. Then kinematic analysis and kinetic analysis were completed by using ADAMS. Finally, key dimensions were adjusted according to kinetic analysis. These tasks are believed to be beneficial to the development of the novel transmission.


Author(s):  
Christoph Heinz ◽  
Markus Schatz ◽  
Michael V. Casey ◽  
Heinrich Stu¨er

To guarantee a faultless operation of a turbine it is necessary to know the dynamic performance of the machine especially during start-up and shut-down. In this paper the vibration behaviour of a low pressure model steam turbine which has been intentionally mistuned is investigated at the resonance point of an eigenfrequency crossing an engine order. Strain gauge measurements as well as tip timing analysis have been used, whereby a very good agreement is found between the methods. To enhance the interpretation of the data measured, an analytical mass-spring-model, which incorporates degrees of freedom for the blades as well as for the rotor shaft, is presented. The vibration amplitude varies strongly from blade to blade. This is caused by the mistuning parameters and the coupling through the rotor shaft. This circumferential blade amplitude distribution is investigated at different operating conditions. The results show an increasing aerodynamic coupling with increasing fluid density, which becomes visible in a changing circumferential blade amplitude distribution. Furthermore the blade amplitudes rise non-linearly with increasing flow velocity, while the amplitude distribution is almost independent. Additionally, the mechanical and aerodynamic damping parameters are calculated by means of a non-linear regression method. Based on measurements at different density conditions, it is possible to extrapolate the damping parameters down to vacuum conditions, where aerodynamic damping is absent. Hence the material damping parameter can be determined.


Author(s):  
Alain Batailly ◽  
Mathias Legrand ◽  
Antoine Millecamps ◽  
Sèbastien Cochon ◽  
François Garcin

Recent numerical developments dedicated to the simulation of rotor/stator interaction involving direct structural contacts have been integrated within the Snecma industrial environment. This paper presents the first attempt to benefit from these developments and account for structural blade/casing contacts at the design stage of a high-pressure compressor blade. The blade of interest underwent structural divergence after blade/abradable coating contact occurrences on a rig test. The design improvements were carried out in several steps with significant modifications of the blade stacking law while maintaining aerodynamic performance of the original blade design. After a brief presentation of the proposed design strategy, basic concepts associated with the design variations are recalled. The iterated profiles are then numerically investigated and compared with respect to key structural criteria such as: (1) their mass, (2) the residual stresses stemming from centrifugal stiffening, (3) the vibratory level under aerodynamic forced response and (4) the vibratory levels when unilateral contact occurs. Significant improvements of the final blade design are found: the need for an early integration of nonlinear structural interactions criteria in the design stage of modern aircraft engines components is highlighted.


Sign in / Sign up

Export Citation Format

Share Document