Modal Analyses of an Axial Turbine Blisk With Intentional Mistuning

Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order (EO) excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.

Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky ◽  
Alfons Bornhorn

Abstract An axial turbine blisk for turbocharger applications is analyzed with respect to the effect of intentional mistuning on the forced response. Originally, the intentional mistuning pattern has been designed by employing a genetic algorithm optimization in order to reduce the forced response caused by low engine order excitation (LEO) of the fundamental flap mode. The solution found has been implemented in a prototype of that blisk. For the purpose of comparison, a second reference blisk has been manufactured without intentional mistuning. The actual mistuning distributions of the blisks have been identified by employing blade-by-blade impact testing. Alternatively, a new inverse approach has been employed, which is based on a least squares formulation and benefits from less experimental effort. Based on the information gained by the aforementioned testing procedures, subset of nominal systems (SNM)-models have been updated, which allow for considering the aeroelastic coupling by means of aerodynamic influence coefficients (AIC). Despite of small but unavoidable deviations from the design intention it could be proved within numerical simulations that the intended 70 per cent reduction of the maximum forced response is nevertheless achieved. In addition, the paper is addressing the effect of the aforementioned intentional mistuning pattern on a higher mode, which is relevant for the durability as well. Hence, new SNM-models have to be updated in order to calculate the forced response due to EO-excitation caused by the nozzle guide vane. Although the original mistuning pattern has been optimized solely for reducing the forced response of the fundamental flap mode, it hardly affects the higher mode forced response in a negative manner.


Author(s):  
Sebastian Willeke ◽  
Lukas Schwerdt ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

A harmonic mistuning concept for bladed disks is analyzed in order to intentionally reduce the forced response of specific modes below their tuned amplitude level. By splitting a mode pair associated with a specific nodal diameter pattern, the lightly damped traveling wave mode of the nominally tuned blisk is superposed with its counter-rotating complement. Consequently, a standing wave is formed in which the former wave train benefits from an increase in aerodynamic damping. Unlike previous analyses of randomly perturbed configurations, the mode-specific stabilization is intentionally promoted through adjusting the harmonic content of the mistuning pattern. Through a re-orientation of the localized mode shapes in relation to the discrete blades, the response is additionally attenuated by an amount of up to 7.6 %. The achievable level of amplitude reduction is analytically predicted based on the properties of the tuned system. Furthermore, the required degree of mistuning for a sufficient separation of a mode pair is derived.


Author(s):  
Seif ElMasry ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky

Abstract This paper aims to study the effect of varying the working line of a compressor onto the forced response vibrations of the blades of an integrally bladed disk (blisk). The investigated rotor belongs to a transonic research compressor, where various probes are placed to measure flow data at all stations and analyze blade vibrations. A single-passage CFD model of all compressor blade-rows is used for steady computations. Using a finite element model, the natural frequencies and mode shapes of the blisk across the operational range of the compressor are predicted. Thus, resonance conditions can be identified from the Campbell diagram. The variation of the compressor working line is investigated at 90% of the maximum shaft speed, where the resonance condition of the 11th blade mode family and the engine order corresponding to the aerodynamic distortion from the upstream stator vane is predicted. Using a single-passage model, time-accurate simulations of the investigated rotor are executed at various operating points, which cover the operational range of the compressor between choke and stall conditions. Aerodynamic damping ratios are calculated using the aerodynamic influence coefficients method at each point, in order to predict the resulting vibration amplitudes of the blades. Relatively high amplitudes of the modal aerodynamic forces are observed at the low working line. A detailed post-processing analysis is performed, as the change of flow incidence contributes largely in the increase of modal aerodynamic forces on the blade. The aerodynamic damping ratios increase with higher working lines, where the rotor achieves relatively higher pressure ratios. However, the damping decreases rapidly close to stall conditions. The trend of the predicted vibration amplitudes is compared to strain gauge measurements from the rig, which are registered during multiple acceleration maneuvers performed over different working lines. A strong correlation between the predicted and measured trends of the forced response vibration is witnessed.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Christopher E. Meinzer ◽  
Joerg R. Seume

Abstract Aerodynamic damping is the key parameter to determine the stability of vibrating blade rows in turbomachinery design. Both, the assessments of flutter and forced response vibrations need an accurate estimate of the aerodynamic damping to reduce the risk of high cycle fatigue that may result in blade loss. However, only very few attempts have been made to measure the aerodynamic damping of rotating blade rows experimentally under realistic operating conditions, but always with friction damping being present. This study closes the gap by providing an experiment in which a turbine blisk is used to eliminate friction damping at the blade roots and thereby isolate aerodynamic damping. The blades are excited acoustically and the resulting nodal diameter modes are measured using an optical tip-timing system in order to realize a fully non-intrusive setup. The measured vibration data are fitted to a single degree-of-freedom model (SDOF) to determine the aerodynamic damping. The results are in good accordance with the time-linearized CFD simulation. It is observed, however, that not only the sweep rate of the acoustic excitation but also the variation of the rotational frequency during the sweep excitation, and the excitation frequency influence the apparent damping.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Thomas Giersch ◽  
Jens Nipkau

The forced response of the first rotor of an E3E-type high pressure compressor blisk is analyzed with regard to varying mistuning, varying engine order excitations and the consideration of aeroelastic effects. For that purpose, SNM-based reduced order models are used in which the disk remains unchanged while the Young’s modulus of each blade is used to define experimentally adjusted as well as intentional mistuning patterns. The aerodynamic influence coefficient technique is employed to model aeroelastic interactions. Furthermore, based on optimization analyses and depending on the exciting EO and aerodynamic influences it is searched for the worst as well as the best mistuning distributions with respect to the maximum blade displacement. Genetic algorithms using blade stiffness variations as vector of design variables and the maximum blade displacement as objective function are applied. An allowed limit of the blades’ Young’s modulus standard deviation is formulated as secondary condition. In particular, the question is addressed if and how far the aeroelastic impact, mainly causing aerodynamic damping, combined with mistuning can even yield a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the inter-blade phase angle is the main driver for a possible response attenuation considering the fundamental blade mode. The results of the optimization analyses are compared to the forced response due to real, experimentally determined frequency mistuning as well as intentional mistuning.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different blades of random lengths. Both specimens are subject to traveling-wave excitations delivered by piezo-electric actuators. The primary aim of the experiment is to demonstrate the occurrence of an increase in forced response blade amplitudes due to mistuning, and to verify analytical predictions about the magnitude of these increases. In particular, the impact of localized mode shapes, engine order excitation, and disk structural coupling on the sensitivity of forced response amplitudes to blade mistuning is reported. This work reports one of the first systematic experiments carried out to demonstrate and quantify the effect of mistuning on the forced response of bladed disks.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky ◽  
Alfons Bornhorn ◽  
Oleg V. Repetckii

The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning, a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible, only two blade different geometries have been allowed, which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes.


Author(s):  
Ryoji Tamai ◽  
Ryozo Tanaka ◽  
Yoshichika Sato ◽  
Karsten Kusterer ◽  
Gang Lin ◽  
...  

Turbine blades are subjected to high static and dynamic loads. In order to reduce the vibration amplitude means of friction damping devices have been developed, e.g. damping wires, interblade friction dampers and shrouds. This paper presents both numerical and experimental results for investigating the dynamical behavior of shrouded turbine blades. The studies are focused on the lowest family of the bladed disk. The aspect of experimental studies, the effect of the shroud contact force on the resonance frequency of the blade was examined by using the simplified blade test stand. Based on the result of the simplified blade studies, the shroud contact force of the real blade was determined in order to stabilize the resonance frequencies of the bladed disk system. The resonance frequencies and mode shapes of the real bladed disk assembly were measured in no rotation and room temperature condition. Finally, the dynamic strains were measured in the actual engine operations by using a telemetry system. The aspect of analytical studies, a non-linear vibration analysis code named DATES was applied to predict vibration behavior of a shrouded blade model which includes contact friction surfaces. The DATES code is a forced response analysis code that employs a 3-dimensional friction contact model. The Harmonic Balance Method (HBM) is applied to solve resulting nonlinear equations of motion in frequency domain. The simulated results show a good agreement with the experimental results.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Thomas Giersch ◽  
Jens Nipkau

The forced response of an E3E-type HPC-blisk front rotor is analyzed with regard to varying mistuning and the consideration of the fluid-structure interaction (FSI). For that purpose, a reduced order model is used in which the disk remains unchanged and mechanical properties of the blades namely stiffness and damping are adjusted to measured as well as intentional blade frequency mistuning distributions. The aerodynamic influence coefficient technique is employed to model the aeroelastics. Depending on the blade mode, the exciting engine order and aerodynamic influences it is sought for the worst mistuning distributions with respect to the maximum blade displacement based on optimization analyses. Genetic algorithms using blade alone frequencies as design variables are applied. The validity of the Whitehead-limit is assessed in this context. In particular, the question is addressed if and how far aeroelastic effects, mainly caused by aerodynamic damping, combined with mistuning can even cause a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the inter-blade phase angle is the main driver for a possible response attenuation considering the fundamental as well as a higher blade mode. Furthermore, the differences to the blisk vibration response without a consideration of the flow and an increase of the disk’s stiffness are discussed. Closing, the influence of pure damping mistuning is analyzed again using optimization.


Sign in / Sign up

Export Citation Format

Share Document