The Relevance of Damper Pre-Optimization and its Effectiveness on the Forced Response of Blades

Author(s):  
Chiara Gastaldi ◽  
Teresa M. Berruti ◽  
Muzio M. Gola

The paper presents a calculation procedure for the design of turbine blades with underplatform dampers. The procedure involves damper “pre-optimization” before the coupled calculation with the blades. The pre-optimization procedure excludes, since the early design stage, all those damper configurations leading to low damping performance. Pre-optimization involves plotting a design “damper map” with forbidden areas, corresponding to poorly performing damper geometries and admissible design areas, where effective solutions for the damper shape can be explored. Once the candidate damper configurations have been selected, the damper equilibrium equations are solved by using both the multi-harmonic balance (MHB) method, and the direct time integration method (DTI). Direct time integration of the damper dynamic equations is implemented in order to compute the trend of the contact forces in time and the shape of the hysteresis cycles at the different contact points. Based on these trends, the correct number of Fourier terms to represent the contact forces on the damper is chosen. It is shown that one harmonic term together with the static term, are enough in the MHB calculation of a pre-optimized damper. The proposed method is applied to a test case of a damper coupled with two blades. Experimental forced response functions of the test case with a nominal damper are available for comparison. The purpose of this paper is to show the effectiveness of the “damper maps” in excluding all those damper configurations, leading to undesirable damper behavior and to highlight the strong influence of the blades mode of vibration on the damper effectiveness. From the comparison of dampers with different geometrical parameters, the pre-optimized damper proved to be not only the most effective, in terms of damping capability, but also the one that leads to a faster and more flexible calculation of the damper, coupled with the blades.

Author(s):  
Chiara Gastaldi ◽  
Teresa M. Berruti ◽  
Muzio M. Gola

The purpose of this paper is to propose an effective strategy for the design of turbine blades with underplatform dampers (UPDs). The strategy involves damper “pre-optimization,” already proposed by the authors, to exclude, before the blades-coupled nonlinear calculation, all those damper configurations leading to low damping performance. This paper continues this effort by applying pre-optimization to determine a damper configuration which will not jam, roll, or detach under any in-plane platform kinematics (i.e., blade bending modes). Once the candidate damper configuration has been found, the damper equilibrium equations are solved by using both the multiharmonic balance method (MHBM) and the direct-time integration (DTI) for the purpose of finding the correct number of Fourier terms to represent displacements and contact forces. It is shown that contrarily to non-preoptimized dampers, which may display an erratic behavior, one harmonic term together with the static term ensures accurate results. These findings are confirmed by a state-of-the-art code for the calculation of the nonlinear forced response of a damper coupled to two blades. Experimental forced response functions (FRF) of the test case with a nominal damper are available for comparison. The comparison of different damper configurations offers a “high-level” validation of the pre-optimization procedure and highlights the strong influence of the blades mode of vibration on the damper effectiveness. It is shown that the pre-optimized damper is not only the most effective but also the one that leads to a faster and more flexible calculation.


Author(s):  
Jens Aschenbruck ◽  
Christopher E. Meinzer ◽  
Linus Pohle ◽  
Lars Panning-von Scheidt ◽  
Joerg R. Seume

The regeneration of highly loaded turbine blades causes small variations of their geometrical parameters. To determine the influence of such regeneration-induced variances of turbine blades on the nozzle excitation, an existing air turbine is extended by a newly designed stage. The aerodynamic and the structural dynamic behavior of the new turbine stage are analyzed. The calculated eigenfrequencies are verified by an experimental modal analysis and are found to be in good agreement. Typical geometric variances of overhauled turbine blades are then applied to stator vanes of the newly designed turbine stage. A forced response analysis of these vanes is conducted using a uni-directional fluid-structure interaction approach. The effects of geometric variances on the forced response of the rotor blade are evaluated. It is shown that the vibration amplitudes of the response are significantly higher for some modes due to the additional wake excitation that is introduced by the geometrical variances e.g. 56 times higher for typical MRO-induced variations in stagger-angle.


Author(s):  
C. Bréard ◽  
J. S. Green ◽  
M. Vahdati ◽  
M. Imregun

This paper presents an iterative method for determining the resonant speed shift when non-linear friction dampers are included in turbine blade roots. Such a need arises when conducting response calculations for turbine blades where the unsteady aerodynamic excitation must be computed at the exact resonant speed of interest. The inclusion of friction dampers is known to raise the resonant frequencies by up to 20% from the standard assembly frequencies. The iterative procedure uses a viscous, time-accurate flow representation for determining the aerodynamic forcing, a look-up table for evaluating the aerodynamic boundary conditions at any speed, and a time-domain friction damping module for resonance tracking. The methodology was applied to an HP turbine rotor test case where the resonances of interest were due to the 1T and 2F blade modes under 40 engine-order excitation. The forced response computations were conducted using a multi-stage approach in order to avoid errors associated with “linking” single stage computations since the spacing between the two bladerows was relatively small. Three friction damper elements were used for each rotor blade. To improve the computational efficiency, the number of rotor blades was decreased by 2 to 90 in order to obtain a stator/rotor blade ratio of 4/9. However, the blade geometry was skewed in order to match the capacity (mass flow rate) of the components and the condition being analysed. Frequency shifts of 3.2% and 20.0% were predicted for the 1T/40EO and 2F/40EO resonances in about 3 iterations. The predicted frequency shifts and the dynamic behaviour of the friction dampers were found to be within the expected range. Furthermore, the measured and predicted blade vibration amplitudes showed a good agreement, indicating that the methodology can be applied to industrial problems.


Author(s):  
Stefano Zucca ◽  
Daniele Botto ◽  
Muzio M. Gola

Under-platform dampers are used to reduce resonant stresses in turbine blades to avoid high cycle fatigue failures. In this paper a model of semi-cylindrical under-platform damper (i.e. with one flat side and one curved side) for turbine blades is described. The damper kinematics is characterized by three degrees of freedom (DOFs): in-plane translations and rotation. Static normal loads acting on the damper sides are computed using the three static balance equations of the damper. Non-uniqueness of normal pre-loads acting on the damper sides is highlighted. Implementation of the model in a numerical code for the forced response calculation of turbine blades with under-platform dampers shows that non-uniqueness of normal pre-loads leads to non-uniqueness of the forced response of the system. A numerical test case is presented to show the capabilities of the model and to analyze the effect of the main system parameters (damper mass, excitation force, coefficient of friction and damper rotation) on the damper behavior and on the system dynamics.


Author(s):  
Christian M. Firrone ◽  
Marco Allara ◽  
Muzio M. Gola

Dry friction damping produced by sliding surfaces is commonly used to reduce vibration amplitude of blade arrays in turbo-machinery. The dynamic behavior of turbine components is significantly affected by the forces acting at their contact interfaces. In order to perform accurate dynamic analysis of these components, contact models must be included in the numerical solvers. This paper presents a novel approach to compute the contact stiffness of cylindrical contacts, analytical and based on the continuous contact mechanics. This is done in order to overcome the known difficulties in simultaneously adjusting the values of both tangential and normal contact stiffness experimentally. Monotonic loading curves and hysteresis cycles of contact forces vs. relative displacement are evaluated as a function of the main contact parameters (i.e. the contact geometry, the material properties and the contact normal load). The new contact model is compared with other contact models already presented in literature in order to show advantages and limitations. The contact model is integrated in a numerical solver, based on the Harmonic Balance Method (HBM), for the calculation of the forced response of turbine components with friction contacts, in particular underplatform dampers. Results from the nonlinear numerical simulations are compared with those from validation experiments.


Author(s):  
C. Xu ◽  
R. S. Amano

With the development of the advanced technology, the combustion temperature is raised for increased efficiencies. At the same time, the turbine and compressor pressure ratio and the mass flow rate rise; thus causing turbine and compressor blades turning and blade lengths increase. Moreover, the high efficiency requirements had made the turbine and compressor blade design difficult. A turbine airfoil has been custom designed for many years, but an optimization for the section design in a three-dimensional consideration is still a challenge. For a compressor blade design, standard section cannot meet the modern compressor requirements. Modern compressor design has not only needs a custom designed section according to flow situation, but also needs three-dimensional optimizations. Therefore, a good blade design process is critical to the turbines and compressors. A blade design of the turbomachines is one of the important steps for a good turbomachine design. A blade design process not only directly influences the overall machine efficiency but also dramatically impact the design time and cost. In this study, a blade design and optimization procedure was proposed for both turbine and compressor blade design. A compressor blade design was used as a test case. It was shown that the current design process had more advantages than conventional design methodology.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1073
Author(s):  
Shangwen He ◽  
Kunli Si ◽  
Bingbing He ◽  
Zhaorui Yang ◽  
Ying Wang

Shroud devices which are typical cyclic symmetric structures are widely used to reduce the vibration of turbine blades in aero engines. Asymmetric rub-impact of adjacent shrouds or aerodynamic excitation forces can excite the bending-torsion coupling vibration of shrouded blades, which will lead to complex contact motions. The aim of this paper is to study the rub-impact dynamic characteristics of bending-torsion coupling vibration of shrouded blades using a numerical method. The contact-separation transition mechanism under complex motions is studied, the corresponding boundary conditions are set up, and the influence of moments of contact forces and aerodynamic excitation forces on the motion of the blade is considered. A three-degree-of-freedom mass-spring model including two mass blocks with the same size and shape is established to simulate the bending-torsion coupling vibration, and the dynamic equations of shrouded blades under different contact conditions are derived. An algorithm based on the fourth-order Runge–Kutta method is presented for simulations. Variation laws of the forced response characteristics of shrouded blades under different parameters are studied, on the basis of which the method to evaluate the vibration reduction characteristics of the shrouded blade system when the motion of the blade is chaotic is discussed. Then, the vibration reduction law of shrouded blades under bending-torsion coupling vibration is obtained.


Author(s):  
Malte Krack ◽  
Anna Herzog ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek ◽  
Christian Siewert ◽  
...  

Vibration reduction of turbine blades by means of friction damping in shroud joints is a well-established technology in the field of turbomachinery dynamics. Three-dimensional contact constraints in the shroud coupling can induce highly nonlinear dynamics in the bladed disk assembly. Moreover, large normal contact stresses, which are typical for this application, necessitate the consideration of microslip effects. This study focuses on the accurate prediction of the forced response of tuned bladed disks subject to friction joints. In order to account for extended friction interfaces, the contact area is discretized into several contact points. Microslip behavior is explicitly enforced by a non-uniform normal pressure distribution. Local elastic properties of the contact area are accurately captured in the reduced order model of the structure by employing a component mode synthesis method. The steady-state forced response is efficiently computed using a Multi-Harmonic Balance ansatz. Thus, it is possible to study and explain the occurrence of internal resonances. Planar Coulomb friction and unilateral normal contact conditions are considered in terms of the Dynamic Lagrangian formulation. The normal preload of the shroud interface is varied in order to study the effect on vibration amplitude and resonance frequency.


Author(s):  
Ender Cigeroglu ◽  
Ning An ◽  
Chia-Hsiang Menq

In this paper, a forced response prediction method for the analysis of constrained and unconstrained structures coupled through frictional contacts is presented. This type of frictional contact problem arises in vibration damping of turbine blades, in which dampers and blades constitute the unconstrained and constrained structures, respectively. The model of the unconstrained/free structure includes six rigid body modes and several elastic modes, the number of which depends on the excitation frequency. In other words, the motion of the free structure is not artificially constrained. When modeling the contact surfaces between the constrained and free structure, discrete contact points along with contact stiffnesses are distributed on the friction interfaces. At each contact point, contact stiffness is determined and employed in order to take into account the effects of higher frequency modes that are omitted in the dynamic analysis. Depending on the normal force acting on the contact interfaces, quasistatic contact analysis is initially employed to determine the contact area as well as the initial preload or gap at each contact point due to the normal load. A friction model is employed to determine the three-dimensional nonlinear contact forces, and the relationship between the contact forces and the relative motion is utilized by the harmonic balance method. As the relative motion is expressed as a modal superposition, the unknown variables, and thus the resulting nonlinear algebraic equations in the harmonic balance method, are in proportion to the number of modes employed. Therefore the number of contact points used is irrelevant. The developed method is applied to a bladed-disk system with wedge dampers where the dampers constitute the unconstrained structure, and the effects of normal load on the rigid body motion of the damper are investigated. It is shown that the effect of rotational motion is significant, particularly for the in-phase vibration modes. Moreover, the effect of partial slip in the forced response analysis and the effect of the number of harmonics employed by the harmonic balance method are examined. Finally, the prediction for a test case is compared with the test data to verify the developed method.


1984 ◽  
Vol 106 (1) ◽  
pp. 65-69 ◽  
Author(s):  
A. Sinha ◽  
J. H. Griffin

The effect of static friction on the design of flexible blade-to-ground vibration dampers used in gas turbine engines is investigated. It is found that for γ (ratio of dynamic and static friction coefficients) less than 1, the steady-state response is essentially harmonic when the damper slip load, S, is small. However, as S increases beyond a certain value, the steady-state response ceases to be simply harmonic and, while still periodic, is a more complex waveform. The transition slip load is found to be lower for smaller γ. The maximum possible reduction in vibratory stresses increases as γ decreases. These analytical results are compared with those from the conventional numerical time integration method. In addition, an efficient time integration algorithm is described which can be used to predict the peak displacements of the transition solution without tracing the whole waveform, a useful procedure when no harmonic steady-state solution exists. The conditions under which blade response can be adequately modeled by simulating only dynamic friction are established.


Sign in / Sign up

Export Citation Format

Share Document