Experimental and Numerical Investigation of the Unsteady Flow Field in a Vaned Diffuser of a High-Speed Centrifugal Compressor

Author(s):  
Klemens Vogel ◽  
Reza S. Abhari ◽  
Armin Zemp

Vaned diffusers in centrifugal compressor stages are used to achieve higher stage pressure ratios, higher stage efficiencies and more compact designs. The interaction of the stationary diffuser with the impeller can lead to resonant vibration with potentially devastating effects. This paper presents unsteady diffuser vane surface pressure measurements using in-house developed, flush mounted, fast response piezo-resistive pressure transducers. The unsteady pressures were recorded for 9 operating conditions, covering a wide range of the compressor map. Experimental work was complemented by 3D unsteady CFD simulations using ANSYS CFX V12.1 to detail the unsteady diffuser aerodynamics. Pressure fluctuations of up to 34.4% of the inlet pressure were found. High pressure variations are present all along the vane and are not restricted to the leading edge region. Frequency analysis of the measured vane surface pressures show that reduced impeller loading and the corresponding reduction of tip leakage fluid changes the characteristics of the fluctuations from a main blade count to a total blade count. The unsteady pressure fluctuations in the diffuser originate from three distinct locations. The impact of the jet wake flow leaving the impeller results in high variation close to the leading edge. It was observed that CFD results overpredicted the amplitude of the pressure fluctuation on average by 62%.

2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Klemens Vogel ◽  
Reza S. Abhari ◽  
Armin Zemp

Vaned diffusers in centrifugal compressor stages are used to achieve higher stage pressure ratios, higher stage efficiencies, and more compact designs. The interaction of the stationary diffuser with the impeller can lead to resonant vibration with potentially devastating effects. This paper presents unsteady diffuser vane surface pressure measurements using in-house developed, flush mounted, fast response piezoresistive pressure transducers. The unsteady pressures were recorded for nine operating conditions, covering a wide range of the compressor map. Experimental work was complemented by 3D unsteady computational fluid dynamics (CFD) simulations using ansys cfx V12.1 to detail the unsteady diffuser aerodynamics. Pressure fluctuations of up to 34.4% of the inlet pressure were found. High pressure variations are present all along the vane and are not restricted to the leading edge region. Frequency analysis of the measured vane surface pressures show that reduced impeller loading, and the corresponding reduction of tip leakage fluid changes the characteristics of the fluctuations from a main blade count to a total blade count. The unsteady pressure fluctuations in the diffuser originate from three distinct locations. The impact of the jet-wake flow leaving the impeller results in high variation close to the leading edge. It was observed that CFD results overpredicted the amplitude of the pressure fluctuation on average by 62%.


Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M. Allport ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson

Ported shroud casing treatment is widely used to delay the onset of surge and thereby enhancing the aerodynamic stability of a centrifugal compressor by recirculating the low momentum fluid in the blade passage. Performance losses associated with the use of recirculation casing treatment are well established in the literature and this is an area of active research. The other, less researched aspect of the casing treatment is its impact on the acoustics of the compressor. This work investigates the impact of ported shroud casing treatment on the acoustic characteristics of the compressor. The flow in two compressor configurations viz. with and without casing treatment operating at the design operating conditions of an iso-speed line are numerically modelled and validated with experimental data from gas stand measurements. The pressure fluctuations calculated as the flow solution are used to compute the spectral signatures at multiple locations to investigate the acoustic phenomenon associated with each configuration. Propagation of the frequency content through the ducts has been estimated with the aid of method of characteristics to enhance the content coming from the compressor. Expected tonal aerodynamic noise sources such as monopole (buzz-saw tones) and dipole (Blade Pass Frequency) are clearly identified in the acoustic spectra of the two configurations. The comparison of two configurations shows higher overall levels and tonal content in the case of a compressor with ported shroud operating at design conditions due to the presence of ‘mid-tones’.


Author(s):  
N. He ◽  
A. Tourlidakis

In this paper, a computational analysis of a high-speed centrifugal compressor stage for turbocharger applications is presented. Emphasis is focused on the effect of different number of diffuser vanes, and for this reason four different designs of the vaned diffuser are analysed. The first three of the diffusers consist of 11, 22 and 33 vanes, respectively, with their leading edge at a radius of 1.075 times the radius of the impeller tip. The fourth one consists of 22 vanes with its leading edge at 1.15 times the radius of the impeller tip. All the above vane designs are of double circular arc shape. A steady CFD analysis is carried out using the Reynolds-Averaged Navier-Stokes solver TASCflow at design and off-design operating conditions. An averaging approach is used at the interface between the impeller and the diffuser. A detailed comparison between the predicted and the available experimental data is performed in terms of pressure rise and efficiency characteristics, and very good agreement is accomplished. In addition, detailed flow distributions are compared and critically analysed. One of the most important conclusions is that while maintaining the overall throat area and the location of the leading and trailing edges of the diffuser, as the number of diffuser vanes increases, the pressure recovery coefficient at the semi-vaneless space at surge condition was found to reduce, the wake pattern becomes more pronounced and the velocity distribution at vaneless and semi-vaneless space becomes more distorted when passing the same mass flow rate and therefore the diffuser has a narrower flow range. On the other hand, it was found that the diffuser outlet to throat area ratio is not the dominant factor to influence the flow range when the number of vanes changes.


Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the single stage centrifugal compressor (SSCC) facility at Purdue University and include speed transients from subidle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge (LE) and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one-third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Z. S. Spakovszky ◽  
C. H. Roduner

In turbocharger applications, bleed air near the impeller exit is often used for secondary flow systems to seal bearing compartments and to balance the thrust load on the bearings. There is experimental evidence that the performance and operability of highly-loaded centrifugal compressor designs can be sensitive to the amount of bleed air. To investigate the underlying mechanisms and to assess the impact of bleed air on the compressor dynamic behavior, a research program was carried out on a preproduction, 5.0 pressure ratio, high-speed centrifugal compressor stage of advanced design. The investigations showed that bleed air can significantly reduce the stable flow range. Compressor rig experiments, using an array of unsteady pressure sensors and a bleed valve to simulate a typical turbocharger environment, suggest that the path into compression system instability is altered by the bleed flow. Without the bleed flow, the prestall behavior is dominated by short-wavelength disturbances, or so called “spikes,” in the vaneless space between the impeller and the vaned diffuser. Introducing bleed flow at the impeller exit reduces endwall blockage in the vaneless space and destabilizes the highly-loaded vaned diffuser. The impact is a 50% reduction in stable operating range. The altered diffuser characteristic reduces the compression system damping responsible for long-wavelength modal prestall behavior. A four-lobed backward traveling rotating stall wave is experimentally measured in agreement with calculations obtained from a previously developed dynamic compressor model. In addition, a self-contained endwall blockage control strategy was employed, successfully recovering 75% of the loss in surge-margin due to the bleed flow and yielding a one point increase in adiabatic compressor efficiency.


1988 ◽  
Vol 110 (3) ◽  
pp. 293-302 ◽  
Author(s):  
U. Haupt ◽  
U. Seidel ◽  
A. N. Abdel-Hamid ◽  
M. Rautenberg

Experiments were conducted to investigate the characteristics of self-excited flow oscillations in a high-performance centrifugal compressor system with a straight channel radial vaned diffuser. Fast response dynamic pressure transducers on the shroud wall and blade-mounted strain gages were used to identify the onset of the oscillations and their characteristics in space and time. In addition, flow characteristics near the shroud wall were visualized by an oil injection method, showing the extent of upstream directed reverse flow in the impeller range during significant unsteady flow compressor operation. Rotating nonuniform flow patterns were found in a wide range of operating speeds before the occurrence of surge. The number of lobes in the nonuniform flow patterns was dependent on the operating conditions and varied from two to four. Results of this experimental investigation were compared with those obtained from a previous investigation of the same compressor but with a cambered vane diffuser. Considerable similarity between the two configurations was found in the spatial distribution of the unsteady pressure field and in the frequencies of the fluctuations. The stability margin before the occurrence of surge and the operating regimes in which very intense pressure fluctuations were found were however different. In both cases, flow visualization techniques revealed the occurrence of reversed flow near the shroud wall of the impeller. Reverse flow extent up to the leading edge of the splitter blades systematically correlated with the occurrence of a nonuniform pressure pattern rotating with relatively high speed. Low rotational speed pressure patterns were observed when the extent of the reverse flow was up to the leading edge of the long blade. These different flow characteristics can be related to the occurrence of distinct rotating stall cell numbers. This result could be confirmed by unsteady pressure and blade vibration measurements.


Author(s):  
D. Jin ◽  
H. Hasemann ◽  
U. Haupt ◽  
M. Rautenberg

Unsteady flow and the rotor rotational behavior during surge in a single stage centrifugal compressor have been investigated to study the physical mechanism of this special operating period. The experiments were performed for the compressor with vaneless and vaned diffuser at different rotational speed. The centrifugal compressor was driven by a 1350 kw dc-motor with Leonard-control. Unsteady pressure was measured with fast response dynamic transducers while rotor speed was simultaneously measured with a capacitive impulser. At the beginning and the end of the surge, the pressure signals measured in the meridional direction from the impeller inlet to the diffuser exit show obvious pressure oscillation. During the whole surge period, the pressure signal at the impeller exit shows periodic fluctuations with very large amplitudes at a high frequency. The further pressure analyses indicate that these pressure fluctuations is produced by the pressure difference across blade pitch. The pressure side and the suction side of the blade are inversed compared with that in the normal compressor operating condition. This reverse pressure difference produces an additional torque on the impeller blades in the impeller rotation direction. The rotating speed of the compressor rotor during surge was also studied. It is shown that during the surge the rotor speed increases slowly until the surge stops. Since the compressor-motor system is controlled by the Leonard-set, the increase in rotor speed indicates the torque reduction of the compressor.


Author(s):  
Beni Cukurel ◽  
Patrick B. Lawless ◽  
Sanford Fleeter

An efficient diffuser is essential to a modern compressor stage, due to its significance in stage performance, durability and operability. To address the need for data that describe the complex, unsteady flow field in a vaned diffuser, Particle Image Velocity is utilized to characterize the spanwise and circumferential variations of the flow features in the vaned diffuser passage of a transonic centrifugal compressor. The spanwise variation in the diffuser flow field is further investigated by comparison of 3 different operating conditions representative of low, nominal and high loading. These data demonstrate that not only the diffuser flow field is highly dependent on the operation conditions, e.g. hub-to-shroud variation increases with loading, but also the circumferential periodicity, created by the highly three dimensional impeller discharge flow, generates a larger unsteadiness towards the hub region of the vaned diffuser.


Author(s):  
Hang Zhao ◽  
Qinghua Deng ◽  
Kuankuan Zheng ◽  
Hanzhen Zhang ◽  
Zhenping Feng

Supercritical CO2 closed-loop Brayton cycles offer the potential of better economical and practical efficiency due to its compact size and smaller compression work as compared with some traditional working fluids cycles, in which compressor is the key component. In this paper, the aerodynamic design and impeller aerodynamic optimization were conducted for a single stage centrifugal compressor with a combined vaneless and vaned diffuser, operating with CO2 slightly above the vapor-liquid critical point. The NIST REFPROP database was used for the computation of supercritical CO2 properties in design analysis and numerical investigation. The flow characteristics of the supercritical CO2 compressor were investigated by NUMECA FINE/Turbo. In order to weaken the low pressure regions, a vaneless diffuser was applied in this design, which would control and reduce the distribution differences of fluid thermodynamic states and increase fluid static pressure. The results indicate that there are no obvious low pressure regions occurring close to the leading edge of vaned diffuser. So it is observed in the design process that the vaneless diffuser could improve the aerodynamic performance of supercritical CO2 compressor. Compared with the operating conditions of the compressor only under centrifugal force, the pressure load from the aerodynamic analysis and the centrifugal load due to high speed of rotation were considered in the study of the stress and deformation of the structure of impeller by ANSYS/Mechanical. It can be concluded that supercritical CO2 provides unique properties for the compressor working process, which have a significant influence on finite element modeling in structural analysis. For the present design the maximum von Mises stress and total deformation are shown much smaller than the maximum allowable values, and thus the compressor could work in a wide range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document