scholarly journals An Introduction Into the Clearance Management of Ansaldo GT36 From Development to Validation

Author(s):  
S. Boeller ◽  
B. Feuillard ◽  
G. Filkorn ◽  
S. Olmes ◽  
F. Prou ◽  
...  

The optimization and evaluation of blading clearance is important for gas turbine efficiency and performance. The Ansaldo GT36 gas turbine offers high efficiency together with outstanding flexibility across a large load range. Active management of engine clearances during the complete development process followed by a thorough validation on the Ansaldo test plant facility in Birr, Switzerland enables the GT to attain ambitious clearance targets. The clearance at baseload must be minimized but is limited by the pinch point clearance during cold, warm and hot start-ups — including normal and fast ramp-up and/or shutdown. Therefore transient analysis is necessary for covering the different operating conditions. A well-established process of 2d finite element modelling of the whole engine model (WEM) comprised of axis-symmetric and plane stress elements was used during the design process from concept to detailed design to optimize the clearances. It delivers the transient stator and rotor deformation and together with the compressor and turbine airfoil deformation based on 3D models the basic clearance evaluation process is defined. The GT engine design was significantly influenced, starting with a simplified version of the WEM for identification of the most promising variants. Subsequently a detailed WEM was developed which is fully validated against measurements on the test engine. Different 3D effects are considered separately at identified critical transient conditions and overlaid on the 2d clearances which lead to the final optimized clearances. In addition to this, limitations from each step of the manufacturing process were identified and improved to reduce tolerances and uncertainties to their minimum. The results of the calculation and clearance prediction process are compared against clearance measurements during all kinds of GT operation and cooldown. Passive clearance indicators showing the remaining gap till rubbing would occur and rub marks, in areas that tolerate it, further validate the clearances and clearance prediction process.

Author(s):  
E. Benvenuti ◽  
B. Innocenti ◽  
R. Modi

This paper outlines parameter selection criteria and major procedures used in the PGT 25 gas turbine power spool aerodynamic design; significant results of the shop full-load tests are also illustrated with reference to both overall performance and internal flow-field measurements. A major aero-design objective was established as that of achieving the highest overall performance levels possible with the matching to latest generation aero-derivative gas generators; therefore, high efficiencies were set as a target both for the design point and for a wide range of operating conditions, to optimize the turbine’s uses in mechanical drive applications. Furthermore, the design was developed to reach the performance targets in conjunction with the availability of a nominal shaft speed optimized for the direct drive of pipeline booster centrifugal compressors. The results of the full-load performance testing of the first unit, equipped with a General Electric LM 2500/30 gas generator, showed full attainment of the design objectives; a maximum overall thermal efficiency exceeding 37% at nominal rating and a wide operating flexibility with regard to both efficiency and power were demonstrated.


Author(s):  
Lothar Bachmann ◽  
W. Fred Koch

The purpose of this paper is to update the industry on the evolutionary steps that have been taken to address higher requirements imposed on the new generation combined cycle gas turbine exhaust ducting expansion joints, diverter and damper systems. Since the more challenging applications are in the larger systems, we shall concentrate on sizes from nine (9) square meters up to forty (40) square meters in ducting cross sections. (Reference: General Electric Frame 5 through Frame 9 sizes.) Severe problems encountered in gas turbine applications for the subject equipment are mostly traceable to stress buckling caused by differential expansion of components, improper insulation, unsuitable or incompatible mechanical design of features, components or materials, or poor workmanship. Conventional power plant expansion joints or dampers are designed for entirely different operating conditions and should not be applied in gas turbine applications. The sharp transients during gas turbine start-up as well as the very high temperature and high mass-flow operation conditions require specific designs for gas turbine application.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
João Roberto Barbosa ◽  
Rob Johan Maria Bastiaans ◽  
Philip de Goey

Currently, high efficiency and low emissions are most important requisites for the design of modern gas turbines due to the strong environmental restrictions around the world. In the past years, alternative fuels have been considered for application in industrial gas turbines. Therefore, combustor performance, pollutant emissions and the ability to burn several fuels became of much concern and high priority has been given to the combustor design. This paper describes a methodology focused on the design of stationary gas turbines combustion chambers with the ability to efficiently burn conventional and alternative fuels. A simplified methodology is used for the calculations of the equilibrium temperature and chemical species in the primary zone of a gas turbine combustor. Direct fuel injection and diffusion flames, together with numerical methods like Newton-Raphson, LU Factorization and Lagrange Polynomials, are used for the calculations. Diesel, ethanol and methanol fuels were chosen for the numerical study. A computer code sequentially calculates the main geometry of the combustor. From the numerical simulation it is concluded that the basic gas turbine combustor geometry, for some operating conditions and burning diesel, ethanol or methanol, are of similar sizes, because the development of aerodynamic characteristics predominate over the thermochemical properties. It is worth to note that the type of fuel has a marked effect on the stability and combustion advancement in the combustor. This can be seen when the primary zone is analyzed under a steady-state operating condition. At full power, the pressure is 1.8 MPa and the temperature 1,000 K at the combustor inlet. Then, the equivalence ratios in the primary zone are 1.3933 (diesel), 1.4352 (ethanol) and 1.3977 (methanol) and the equilibrium temperatures for the same operating conditions are 2,809 K (diesel), 2,754 K (ethanol) and 2,702 K (methanol). This means that the combustor can reach similar flame stability conditions, whereas the combustion efficiency will require richer fuel/air mixtures of ethanol or methanol are burnt instead of diesel. Another important result from the numerical study is that the concentration of the main pollutants (CO, CO2, NO, NO2) is reduced when ethanol or methanol are burnt, in place of diesel.


Author(s):  
José Carlos Teixeira ◽  
Rui Ferreira ◽  
Eurico A. Seabra ◽  
Manuel Eduardo Ferreira

Environmental concerns and the drive to reduce the dependence on petroleum brought the use of renewable energies to the forefront. Biomass appears as a very interesting alternative for direct conversion into heat. In this context, densified forms of biomass such as pellets are of great relevance because of their easy of use, high efficiency and low emissions. The practical interest in pellet combustion has been driven by the domestic heating sector, which favors the characteristics that are intrinsic of this fuel, despite its relatively higher price. However, the growing costs of fossil fuels have extended the interest of pellet fuels into industrial applications, including co-firing in power stations. A fast growing market includes the retrofitting of existing fuel boilers and furnaces with alternative burners that can be fitted into existing combustion systems. Such an approach has proved very attractive due to the low installation cost and the growing existence of fuels produced in the vicinity of the end user. This involves in most cases a custom built application which requires a high level of flexibility to variable operating conditions. This work reports on the development of a 120 kW pellet burner. A prototype of the burner was built that enables the independent control of the air supply into various regions of the combustion chamber and an accurate supply of fuel. The burner was fitted into a testing furnace of cylindrical shape oriented horizontally. Its diameter is 0.5 m and is constructed in a modular fashion with a total length of 2.2 m. All the facility is fully instrumented and includes: temperature data in various locations inside the chamber, flue gases emissions (CO, CO2, NOx) measurements and flow rates. The objective of the test and development is to optimize the combustion over the thermal load range of the facility. The excess air, fuel supply (primary and secondary) and the shape of the furnace grate enable the optimization of the burner with CO emissions of approximately 50 ppm, well below the acceptable limits.


Author(s):  
Kousuke Nishida ◽  
Toshimi Takagi ◽  
Shinichi Kinoshita

A solid oxide fuel cell (SOFC) is expected to be applied to the distributed energy systems because of its high thermal efficiency and exhaust gas utilization. The exhaust heat from the SOFC can be transferred to the electric power by a gas turbine, and the high efficiency power generation can be achieved by constructing the SOFC and gas turbine hybrid system. In this study, the local processes in the electrodes and electrolyte of unit SOFC are analyzed taking into account the heat conduction, mass diffusion, electrode reactions and the transport of electron and oxygen ion. The temperature and concentration distributions perpendicular to the electrolyte membrane are shown. The effects of the operating conditions on the cell performance are also shown. Furthermore, the entropy generation and exergy loss of each process in the electrodes and electrolyte are analyzed and the reason for generating the exergy loss in the SOFC is clarified. It is noted that two electrode reactions are responsible for the major exergy loss.


Author(s):  
Bin Zhou

In situ condition monitoring (CM) is a crucial element in protection and predictive maintenance of large rotating PowerGen equipment, such as gas turbines or steam turbines. In this work, selected gas turbine loss events occurring during a recent 10-year period at our clients’ power generation plants were evaluated. For each loss event, a loss scenario or a chain of failures was outlined after investigating the available loss record. These loss events were then categorized based on the nature of the associated loss scenario. The study subsequently focused on the variables that could be monitored in real-time to detect the abnormal turbine operating conditions, such as vibration characteristics, temperature, pressure, quality of working fluids, and material degradations. These groups of CM variables were then matched with detectable failures in each loss event and prioritized based on their effectiveness for failure detection and prevention. The detectable loss events and the associated loss values were used in this evaluation process. The study finally concluded with a summary of findings and path-forward actions.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Dodeye Igbong ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis

Abstract In the last few years, one considerable factor for the viability and interest in the closed-cycle gas turbine (GT) systems for nuclear or conventional power plant application is its potential to maintain high cycle performance at varying operating conditions. However, for this potential to be realized, more competitive analysis and understanding of its control strategy are importantly required. In this paper, the iterative procedure for three independent control strategies of a 40 MW single-shaft intercooled-recuperated closed-cycle GT incorporated to a generation IV nuclear reactor is been analyzed and their performance at various operating conditions compared. The rationale behind this analysis was to explore different control strategies and to identify potential limitations using each independent control. The inventory control strategy offered a more viable option for high efficiency at changes in ambient and part-load operations, however, operational limitations in terms of size and pressure of inventory tank, rotational speed for which the centrifugal forces acting on the blade tips could become too high, hence would affect the mechanical integrity and compressor performance. The bypass control responds rapidly to load rejection in the event of loss of grid power. And more interestingly, the results showed the need for a mixed or combined control instead of a single independent technique, which is limited in practice due to operational limits.


2015 ◽  
Vol 12 (2) ◽  
Author(s):  
Stefano Campanari ◽  
Matteo Gazzani

Driven by the search for the highest theoretical efficiency, several studies have investigated in the last years the adoption of fuel cells (FCs) in the field of power production from natural gas with CO2 capture. Most of the proposed power cycles rely on high temperature FCs, namely, solid oxide FCs (SOFCs) and molten carbonate FCs (MCFCs), based on the concept of hybrid FC plus gas turbine cycles. Accordingly, high temperature FCs are integrated with a simple or modified Brayton cycle. As far as SOFCs are concerned, CO2 can be separated downstream the FC via a range of available technologies, e.g., chemical or physical separation processes, oxy-combustion, and cryogenic methods. Following a literature review on promising plant configurations, this work investigates the potential of adopting an external natural gas conversion section with respect to the plant efficiency. As a reference plant, we considered a power cycle proposed by Adams and Barton (2010, “High-Efficiency Power Production From Natural Gas With Carbon Capture,” J. Power Sources, 195(7), pp. 1971–1983), whose performance is the highest found in literature for SOFC-based power cycles, with 82% LHV electrical efficiency. It is based on a prereforming concept where fuel is reformed ahead the SOFC, which thus works with a high hydrogen content fuel. After reproducing the power cycle with the ideal assumptions proposed by the original authors, as second step, the simulations were focused on revising the power cycle, implementing a complete set of assumptions about component losses and more conservative operating conditions about FC voltage, heat exchangers minimum temperature differences (which were previously neglected), maximum steam temperature (set according to heat recovery steam generator (HRSG) practice), turbomachinery efficiency, component pressure losses, and other adjustments. The simulation also required to design an appropriate heat exchangers network, which turned out to be very complex, instead of relying on the free allocation of heat transfer among all components. Considering the consequent modifications with respect to the original layout, the net electric efficiency changes to around 63% LHV with nearly complete (95%+) CO2 capture, a still remarkable but less attractive value. On the other hand, the power cycle requires a complicated and demanding heat exchangers network and heavily relies on the SOFC performances, not generating a positive power output from the gas turbine loop. Detailed results are presented in terms of energy and material balances of the proposed cycles. All simulations have been carried out with the proprietary code GS, developed by the GECOS group at Politecnico di Milano.


Author(s):  
Hiroshi Uchida ◽  
Mutsuo Shiraki ◽  
Akinobu Bessho ◽  
Yoichi Yagi

In Japan, a program of research and development of a 100 kW automotive ceramic gas turbine (CGT) has been carried out in the Petroleum Energy Center with active cooperation of petroleum, automobile and ceramics industries as well as other related industries. As a part of this research and development program, we have studied and developed a centrifugal compressor with variable inlet guide vanes for CGT engines. There has been a strong demand for a compressor with a high efficiency and a wide flow range. The compressor performance goals are an adiabatic efficiency of 81% and a surge margin of 8% under maximum power operating conditions. This paper describes the methods for designing impellers, diffusers and variable inlet guide vanes, and presents the results of compressor performance tests. The test results reveal that the surge margin and compressor efficiency at partial load are improved by using inlet guide vanes.


Author(s):  
Bin Zhou

In-situ condition monitoring (CM) is a crucial element in protection and predictive maintenance of large rotating Power-Gen equipment such as gas turbines or steam turbines. In this work, selected gas turbine loss events occurring during a recent ten-year period at FM Global clients’ power generation plants were evaluated. For each loss event, a loss scenario or a chain of failures was outlined after investigating the available loss record. These loss events were then categorized based on the nature of the associated loss scenario. The study subsequently focused on the variables that could be monitored in real time to detect the abnormal turbine operating conditions, such as vibration characteristics, temperature, pressure, quality of working fluids and material degradations. These groups of condition monitoring variables were then matched with detectable failures in each loss event and prioritized based on their effectiveness for failure detection and prevention. The detectable loss events and the associated loss value were used in this evaluation process. The study finally concluded with a summary of findings and path-forward actions.


Sign in / Sign up

Export Citation Format

Share Document