Improved Low Cycle Fatigue Analysis for Ni-Based Turbine Nozzles

Author(s):  
Gianluca Maggiani ◽  
Matthew J. Roy ◽  
Simone Colantoni ◽  
Philip J. Withers

The requirements for cleaner energy have driven industrial gas turbines manufacturers to increase firing temperatures and improve cooling of nozzles. The application of high temperature alloys having adequate thermo-mechanical requirements is critical, as assessed by low cycle fatigue performance. The effect of higher firing temperatures combined with higher cooling efficiencies has lead to operating cycles where the level of plastic strain imparted define component life. The capability of material models to account for non-linear effects such as ratchetting or shakedown, cyclic hardening or softening as well as Bauschinger or relaxation effects have been highlighted in this context. Neglecting these effects can lead to over and under-conservative life assessment analysis, while accounting for them using standard multilinear material models lead to convergence issues in finite element analysis. In this paper, Chaboche viscoplastic model has been applied to a transient structural of a first stage gas turbine nozzle. Fitting of the model based on experimental mechanical test data on MAR-M-247 alloy will be described, followed by an overview of how the model may be implemented to a benchmark nozzle thermo-mechanical transient analysis. Finally the details how the Chaboche-type model has provided up to 50% decrease in computation time when compared to using a standard multi-linear material modelling approach.

Author(s):  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Steffen Bergholz ◽  
Christian Philippek ◽  
Jevgenij Kobzarev

Components of conventional power plants are subject to potential damage mechanisms such as creep, fatigue and their combination. These mechanisms have to be considered in the mechanical design process. Against this general background — as an example — the paper focusses on the low cycle fatigue behavior of a main steam shut off valve. The first design check based on standard design rules and linear Finite Element Analysis (FEA) identifies fatigue sensitive locations and potentially high fatigue usage. This will often occur in the context of flexible operational modes of combined cycle power plants which are a characteristic of the current demands of energy supply. In such a case a margin analysis constitutes a logical second step. It may comprise the identification of a more realistic description of the real operational loads and load-time histories and a refinement of the (creep-) fatigue assessment methods. This constitutes the basis of an advanced component design and assessment. In this work, nonlinear FEA is applied based on a nonlinear kinematic constitutive material model, in order to simulate the thermo-mechanical behavior of the high-Cr steel component mentioned above. The required material parameters are identified based on data of the accessible reference literature and data from an own test series. The accompanying testing campaign was successfully concluded by a series of uniaxial thermo-mechanical fatigue (TMF) tests simulating the most critical load case of the component. This detailed and hybrid approach proved to be appropriate for ensuring the required lifetime period of the component.


Author(s):  
Zhong Zhang ◽  
Xijia Wu

Abstract A general fatigue life equation is derived by modifying the Tanaka-Mura-Wu dislocation pile-up model for variable strain-amplitude fatigue processes, where the fatigue crack nucleation life is expressed in terms of the root mean square of plastic strain range. Low-cycle fatigue tests were conducted on an austenitic stainless steel. at 400°C and 600°C, the material exhibits continuously cyclic-hardening behaviour. The root mean square of plastic strain ranges is evaluated from the experimental data for each test condition at strain rates ranging from 0.0002/s to 0.02/s. The variable-amplitude Tanaka-Mura-Wu model is found to be in good agreement with the LCF data, which effectively proves Miner’s rule on the stored plastic strain energy basis.


2010 ◽  
Vol 638-642 ◽  
pp. 455-460 ◽  
Author(s):  
A. Rutecka ◽  
L. Dietrich ◽  
Zbigniew L. Kowalewski

The AlSi8Cu3 and AlSi7MgCu0.5 cast aluminium alloys of different composition and heat treatment were investigated to verify their applicability as cylinder heads in the car engines [1]. Creep tests under the step-increased stresses at different temperatures, and low cycle fatigue (LCF) tests for a range of strain amplitudes and temperatures were carried out. The results exhibit a significant influence of the heat treatment on the mechanical properties of the AlSi8Cu3 and AlSi7MgCu0.5. An interesting fact is that the properties strongly depend on the type of quenching. Lower creep resistance (higher strain rates) and lower stress response during fatigue tests were observed for the air quenched materials in comparison to those in the water quenched. Cyclic hardening/softening were also observed during the LCF tests due to the heat treatment applied. The mechanical properties determined during the tests can be used to identify new constitutive equations and to verify existing numerical models.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Hiun Nagamori ◽  
Koji Takahashi

The stress states of elbow and tee pipes are complex and different from those of straight pipes. The low-cycle fatigue lives of elbows and tees cannot be predicted by Manson's universal slope method; however, a revised universal method proposed by Takahashi et al. was able to predict with high accuracy the low-cycle fatigue lives of elbows under combined cyclic bending and internal pressure. The objective of this study was to confirm the validity of the revised universal slope method for the prediction of low-cycle fatigue behaviors of elbows and tees of various shapes and dimensions under conditions of in-plane bending and internal pressure. Finite element analysis (FEA) was carried out to simulate the low-cycle fatigue behaviors observed in previous experimental studies of elbows and tees. The low-cycle fatigue behaviors, such as the area of crack initiation, the direction of crack growth, and the fatigue lives, obtained by the analysis were compared with previously obtained experimental data. Based on this comparison, the revised universal slope method was found to accurately predict the low-cycle fatigue behaviors of elbows and tees under internal pressure conditions regardless of differences in shape and dimensions.


2021 ◽  
Author(s):  
Navindra Wijeyeratne ◽  
Firat Irmak ◽  
Ali P. Gordon

Abstract Nickel-base superalloys (NBSAs) are extensively utilized as the design materials to develop turbine blades in gas turbines due to their excellent high-temperature properties. Gas turbine blades are exposed to extreme loading histories that combine high mechanical and thermal stresses. Both directionally solidified (DS) and single crystal NBSAs are used throughout the industry because of their superior tensile and creep strength, excellent low cycle fatigue (LCF), high cycle fatigue (HCF), and thermomechanical fatigue (TMF) capabilities. Directional solidification techniques facilitated the solidification structure of the materials to be composed of columnar grains in parallel to the <001> direction. Due to grains being the sites of failure initiation the elimination of grain boundaries compared to polycrystals and the alignment of grain boundaries in the normal to stress axis increases the strength of the material at high temperatures. To develop components with superior service capabilities while reducing the development cost, simulating the material’s performance at various loading conditions is extremely advantageous. To support the mechanical design process, a framework consisting of theoretical mechanics, numerical simulations, and experimental analysis is required. The absence of grain boundaries transverse to the loading direction and crystallographic special orientation cause the material to exhibit anisotropic behavior. A framework that can simulate the physical attributes of the material microstructure is crucial in developing an accurate constitutive model. The plastic flow acting on the crystallographic slip planes essentially controls the plastic deformation of the material. Crystal Visco-Plasticity (CVP) theory integrates this phenomenon to describe the effects of plasticity more accurately. CVP constitutive models can capture the orientation, temperature, and rate dependence of these materials under a variety of conditions. The CVP model is initially developed for SX material and then extended to DS material to account for the columnar grain structure. The formulation consists of a flow rule combined with an internal state variable to describe the shearing rate for each slip system. The model presented includes the inelastic mechanisms of kinematic and isotropic hardening, orientation, and temperature dependence. The crystallographic slip is accounted for by including the required octahedral, cubic, and cross slip systems. The CVP model is implemented through a general-purpose finite element analysis software (i.e., ANSYS) as a User-Defined Material (USERMAT). Uniaxial experiments were conducted in key orientations to evaluate the degree of elastic and inelastic anisotropy. The temperature-dependent modeling parameter is developed to perform non-isothermal simulations. A numerical optimization scheme is utilized to develop the modeling constant to improve the calibration of the model. The CVP model can simulate material behavior for DS and SX NBSAs for monotonic and cyclic loading for a range of material orientations and temperatures.


Author(s):  
Zhong Zhang ◽  
Xijia Wu

Abstract A general fatigue life equation is derived by modifying the Tanaka-Mura-Wu dislocation pile-up model for variable strain-amplitude fatigue processes, where the fatigue crack nucleation life is expressed in terms of the root mean square of plastic strain range. Low-cycle fatigue tests were conducted on an austenitic stainless steel. At 400 ? and 600 ?, the material exhibits continuously cyclic-hardening behaviour. The root mean square of plastic strain ranges is evaluated from the experimental data for each test condition at strain rates ranging from 0.0002/s to 0.02/s. The variable-amplitude Tanaka-Mura-Wu model is found to be in good agreement with the LCF data, which effectively proves Miner's rule on the stored plastic strain energy basis.


2018 ◽  
Vol 43 (1) ◽  
pp. 41-56 ◽  
Author(s):  
M. Peč ◽  
J. Zapletal ◽  
F. Šebek ◽  
J. Petruška

2018 ◽  
Vol 22 (3) ◽  
pp. 581-596
Author(s):  
Zhao Fang ◽  
Aiqun Li ◽  
Sheng Shen ◽  
Wanrun Li

Axial low-cycle fatigue tests are conducted on transverse butt joint specimens and cruciform joint specimens made of carbon structural steel GB Q235B. The effect of slip between the specimens and the grips of the test machine is considered by the proposal of a linear slip model. The cyclic softening properties are studied by observing the variation of stress amplitude with cycles. The cyclic stress–strain curve and the strain–life curve for both kinds of specimens are obtained based on the fatigue test data, and the corresponding coefficients are fitted. In order to verify the fatigue test results, finite element models of specimens are established and the corresponding fatigue life assessment is conducted using the local stress–strain approach and the equivalent structural stress approach, respectively. The results show that the effect of slip is unneglectable and the established linear slip model is reasonable. The two kinds of specimens both show a strain softening property, but cruciform joint specimens experience sudden falls of stress amplitude during the test due to the damage of welded lines; cruciform joint specimens show an either one-side failure mode or two-side failure mode while butt joint specimens only show a one-side failure mode; the two-side failure mode tends to lead to shorter fatigue life, so in the design of cruciform joint, such failure mode should be avoided.


Sign in / Sign up

Export Citation Format

Share Document