Effect of Row Spacing on the Accuracy of Film Cooling Superposition Method

Author(s):  
Lang Wang ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Film cooling technique is widely used in a modern gas turbine. Many applications in hot sections require multiple film cooling rows to get better cooled. In most situation, the additive effect is computed using Sellers superposition method, but it is not accurate when the hole rows are close to each other. In this paper, row spacing between two rows of cooling hole was investigated by numerical method, which was validated by PSP results. The validation experiments are performed on flat test bench and the freestream is maintained at 25m/s. The inlet boundary conditions of numerical simulations were same with the experiment. Both round hole and shaped hole were investigated at blowing ratio M = 0.5, density ratios DR = 1.5 and row spacing S/D = 6, 10, 15, 20. It is found that the round hole results by Sellers method are similar to experiment results only at large row spacing, and the results of Sellers are always higher than experimental results. The boundary layer has a big effect on cooling effectiveness for round hole, but very little effect on shaped hole. When the row spacing increase, the difference between experiment and prediction become smaller. The vortex is the major factor to effect the accuracy of superposition method.

Author(s):  
Travis B. Watson ◽  
Sara Nahang-Toudeshki ◽  
Lesley M. Wright ◽  
Daniel C. Crites ◽  
Mark C. Morris ◽  
...  

Hot section turbine engine components are often cooled through the use of a cool film of air on the component wall. The source of the air used for film cooling comes from the compressor of the gas turbine engine and may be 800°C, or more, cooler than the hot gas path air. The temperature differential between the hot mainstream gas and the film coolant results in a large difference in density between the two gases. In order to investigate the effect of high density ratios on film cooling performance, a traditional, round hole (θ = 30°) and a laidback, fan shaped hole (θ = 30°, α = γ = 10°) were observed using Stereo-Particle Image Velocimetry (S-PIV). Flowfield measurements were performed on various planes downstream of the film cooling hole (x/d = 0, 1, 3 and 10 for the round hole and x/d = 0, 3, and 10 for the shaped hole). At each location the coolant-to-mainstream interaction was captured at multiple density ratios (DR = 1, 2, 3, 4) and blowing ratios (M = 0.5, 1.0, 1.5). Using S-PIV, the three-dimensional flow field was measured. Distributions of the flow vorticity were derived from the high speed velocity measurements taken during S-PIV testing. For the simple angle, round holes, the results show at the elevated density ratios, the coolant spreads laterally near the hole; while at DR = 1, the coolant trace is limited to the width of the film cooling hole. Furthermore, as the cooling jet exits from the round hole, the vorticity within the jet is very strong, leading to increased mixing with the mainstream. However, as the density ratio increases (at a given blowing ratio), this mixing was reduced. For a given flow condition, the rotation was reduced with the jet exiting the shaped hole (compared to the round hole), and this led to enhanced protection on the surface. While investigating both round and shaped holes, it was shown the S-PIV method is a valuable tool to observe and quantify the jet–to–mainstream interactions near the film cooled surface.


Author(s):  
Robert P. Schroeder ◽  
Karen A. Thole

Film cooling on airfoils is a crucial cooling method as the gas turbine industry seeks higher turbine inlet temperatures. Shaped film cooling holes are widely used in many designs given the improved performance over that of cylindrical holes. Although there have been numerous studies of shaped holes, there is no established baseline shaped hole to which new cooling hole designs can be compared. The goal of this study is to offer the community a shaped hole design, representative of proprietary and open literature holes that serves as a baseline for comparison purposes. The baseline shaped cooling hole design includes the following features: hole inclination angle of 30° with a 7° expansion in the forward and lateral directions; hole length of 6 diameters; hole exit-to-inlet area ratio of 2.5; and lateral hole spacing of 6 diameters. Adiabatic effectiveness was measured with this new shaped hole and was found to peak near a blowing ratio of 1.5 at density ratios of 1.2 and 1.5 as well as at both low and moderate freestream turbulence of 5%. Reductions in area-averaged effectiveness due to freestream turbulence at low blowing ratios were as high as 10%.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Emin Issakhanian ◽  
Christopher J. Elkins ◽  
John K. Eaton

The need for improvements in film cooling effectiveness over traditional cylindrical film cooling holes has led to varied shaped hole and sister hole designs of increasing complexity. This paper presents a simpler shaped hole design which shows improved film cooling effectiveness over both cylindrical holes and diffusing fan-shaped holes without the geometric complexity of the latter. Magnetic resonance imaging measurement techniques are used to reveal the coupled 3D velocity and coolant mixing from film cooling holes which are of a constant oval cross section as opposed to round. The oval-shaped hole yielded an area-averaged adiabatic effectiveness twice that of the diffusing fan-shaped hole tested. Three component mean velocity measurements within the channel and cooling hole showed the flow features and vorticity fields which explain the improved performance of the oval-shaped hole. As compared to the round hole, the oval hole leads to a more complex vorticity field, which reduces the strength of the main counter-rotating vortex pair (CVP). The CVP acts to lift the coolant away from the turbine blade surface, and thus strongly reduces the film cooling effectiveness. The weaker vortices allow the coolant to stay closer to the blade surface and to remain relatively unmixed with the main flow over a longer distance. Thus, the oval-shaped film cooling hole provides a simpler solution for improving film cooling effectiveness beyond circular hole and diffusing hole designs.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3573
Author(s):  
Soo-In Lee ◽  
Jin-Young Jung ◽  
Yu-Jin Song ◽  
Jae-Su Kwak

In this study, the effect of mainstream velocity on the optimization of a fan-shaped hole on a flat plate was experimentally investigated. The experiment was conducted by changing the forward expansion angle (βfwd), lateral expansion angle (βlat), and metering length ratio (Lm/D) of the film-cooling hole. A total of 13 cases extracted using the Box–Behnken method were considered to examine the effect of the shape parameters of the film-cooling hole under a 90 m/s mainstream velocity condition, and the results were compared with the results derived under a mainstream velocity of 20 m/s. One density ratio (DR = 2.0) and a blowing ratio (M) ranging from 1.0 to 2.5 were considered, and the pressure-sensitive paint (PSP) technique was applied for the film-cooling effectiveness (FCE). As a result of the experiment, the optimized hole showed a 49.3% improvement in the overall averaged FCE compared to the reference hole with DR = 2.0 and M = 2.0. As the blowing ratio increased, the hole exit area tended to increase, and this tendency was the same as that in the 20 m/s mainstream condition.


Author(s):  
Emin Issakhanian ◽  
Christopher J. Elkins ◽  
John K. Eaton

The need for improvements in film cooling effectiveness over traditional cylindrical film cooling holes has led to varied shaped hole and sister hole designs of increasing complexity. This paper presents a simpler shaped-hole design which shows improved film cooling effectiveness over both cylindrical holes and diffusing fan-shaped holes without the geometric complexity of the latter. Magnetic resonance imaging measurement techniques are used to reveal the coupled 3D velocity and coolant mixing from film cooling holes which are of a constant oval cross-section as opposed to round. The oval shaped hole yielded an area-averaged adiabatic effectiveness twice that of the diffusing fan-shaped hole tested. Three component mean velocity measurements within the channel and cooling hole showed the flow features and vorticity fields which explain the improved performance of the oval shaped hole. As compared to the round hole, the oval hole leads to a more complex vorticity field which reduces the strength of the main counter-rotating vortex pair. The counter-rotating vortex pair acts to lift the coolant away from the turbine blade surface and thus strongly reduces the film cooling effectiveness. The weaker vortices allow coolant to stay closer to the blade surface and to remain relatively unmixed with the main flow over a longer distance. Thus, the oval-shaped film cooling hole provides a simpler solution for improving film cooling effectiveness beyond circular hole and diffusing hole designs.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Molly K. Eberly ◽  
Karen A. Thole

Film-cooling is one of the most prevalent cooling technologies that is used for gas turbine airfoil surfaces. Numerous studies have been conducted to give the cooling effectiveness over ranges of velocity, density, mass flux, and momentum flux ratios. Few studies have reported flowfield measurements with even fewer of those providing time-resolved flowfields. This paper provides time-averaged and time-resolved particle image velocimetry data for a film-cooling flow at low and high density ratios. A generic film-cooling hole geometry with wide lateral spacing was used for this study, which was a 30 deg inclined round hole injecting along a flat plate with lateral spacing P/D = 6.7. The jet Reynolds number for flowfield testing varied from 2500 to 7000. The data indicate differences in the flowfield and turbulence characteristics for the same momentum flux ratios at the two density ratios. The time-resolved data indicate Kelvin–Helmholtz breakdown in the jet-to-freestream shear layer.


Author(s):  
Pingting Chen ◽  
Lang Wang ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang ◽  
...  

Abstract Film cooling technology is widely used in gas turbines. Improvement of gas turbine thermal efficiency, specific power and specific thrust can be achieved by reducing the use of cooling air by improvements on film cooling technology. Experimental and numerical efforts have demonstrated that cooling effectiveness is reduced when kidney vortices created as the emerging film cooling jet flow interacts with the passage flow resulting in coolant lift-off and mixing. With higher blowing ratios, M, these kidney vortices become stronger and effectiveness worsens. Different technologies have been developed to enhance film cooling effectiveness by manipulating the kidney vortices. Some reduce local blowing ratios and local injection angles with expanded hole exits, called shaped holes. Others are employing hole geometries in an attempt to establish anti-kidney vortices in the flow field to weaken the effects of kidney vortices. Most of these film cooling technologies focus on methods that are within the present limits of manufacturing technology. However, with the additive manufacturing anticipated in the future, there will be more freedom in film cooling hole design. Exploiting this freedom, the present authors tried using curved holes to generate Dean vortices within the delivery line. These vortices have opposite direction of rotation to the vorticity of the kidney vortices and, thus, there is interaction between these vortices in the mixing region. It is shown that as a result of the inclusion of Dean vortices, the curved hole delivery leads to enhanced film cooling effectiveness. Numerical results, including film cooling effectiveness values, tracking of vortices in the flow field, heat transfer coefficients, and net heat flux reduction are compared between the curved hole (CH), round hole (RH) and a laidback, fan-shaped hole (SH) with blowing ratios, M, of 0.5, 1.0, 1.5, 2.0 and 2.5. The laidback, fan-shaped hole represents the state of the art in film cooling hole design. Another curved hole (RCH) with the opposite (to the CH hole) curvature of delivery line is checked for comparison, with M = 1.5. The comparison shows that film cooling effectiveness values with the CH curved hole are higher than those with cylindrical film cooling holes at every blowing ratio studied. The curved hole has lower film cooling effectiveness values than the laidback, fan-shaped holes when M = 0.5 and 1.0, but shows advantages when the blowing ratio is higher than 1.0. With the interaction between Dean vortices and kidney vortices when using curved holes, a large amount of coolant re-attaches to the wall after moving streamwise for some distance, providing improved downstream film cooling performance. There is heat transfer enhancement for the curved hole case due to a higher kinetic energy transferred to the near-wall region, however. Nevertheless, the curved hole still displays a higher net heat flux reduction (NHFR) when the blowing ratio is high.


2005 ◽  
Vol 128 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Yuzhen Lin ◽  
Bo Song ◽  
Bin Li ◽  
Gaoen Liu

As an advanced cooling scheme to meet increasingly stringent combustor cooling requirements, multihole film cooling has received considerable attention. Experimental data of this cooling scheme are limited in the open literature in terms of different hole patterns and blowing ratios. The heat-mass transfer analogy method was employed to measure adiabatic film cooling effectiveness of three multihole patterns. Three hole patterns differed in streamwise row spacing (S), spanwise hole pitch (P), and hole inclination angle (α), with the first pattern S∕P=2 and α=30°, the second S∕P=1 and α=30°, and the third S∕P=2 and α=150°. Measurements were performed at different blow ratios (M=1-4). Streamwise coolant injection offers high cooling protection for downstream rows. Reverse coolant injection provides superior cooling protection for initial rows. The effect of blowing ratio on cooling effectiveness is small for streamwise injection but significant for reversion injection.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


2021 ◽  
Author(s):  
Jie Wang ◽  
Chao Zhang ◽  
Xuebin Liu ◽  
Liming Song ◽  
Jun Li ◽  
...  

Abstract Aiming at investigating the effects of crossflow and vortex generator on film cooling characteristics of fan-shaped hole, the film cooling performance was measured experimentally by infrared camera. The blowing ratio is fixed at 0.5 and 1.5. The Reynolds number of the mainstream based on the hole diameter remains at 7000 and the inlet Reynolds number of crossflow is 40000. The experimental results show that the film cooling performance becomes better when the blowing ratio increases from 0.5 to 1.5 for each model, and the film cooling performance becomes worse under the influence of crossflow. When the blowing ratio is 1.5, the area-averaged film cooling effectiveness of the fan-shaped hole model with vortex generator decreases by 16.6% because of the influence of crossflow. The combined model always performs better compared with the model without vortex generator under all working conditions. When the blowing ratio becomes 1.5, under the influence of crossflow, the area-averaged film cooling effectiveness of the combined model could increase by 14.8%, compared with the model without vortex generator. To further improve the film cooling performance, the global optimization algorithm based on the Kriging method and the CFD technology are coupled to optimize the combined model under crossflow condition at the high blowing ratio, and the optimized design is verified by experiments. The experimental results show that the area-averaged film cooling effectiveness of the optimized design increases by 17.8% compared with the reference model.


Sign in / Sign up

Export Citation Format

Share Document