A Critical Analysis on Low-Order Simulation Models for Darrieus VAWTs: How Much Do They Pertain to the Real Flow?

Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Giacomo Persico ◽  
Vincenzo Dossena ◽  
...  

To improve the efficiency of Darrieus wind turbines, which still lacks from that of horizontal-axis rotors, Computational Fluid Dynamics (CFD) techniques are now extensively applied, since they only provide a detailed and comprehensive flow representation. Their computational cost makes them, however, still prohibitive for routine application in the industrial context, which still makes large use of low-order simulation models like the Blade Element Momentum (BEM) theory. These models have been shown to provide relatively accurate estimations of the overall turbine performance; conversely, the description of the flow field suffers from the strong approximations introduced in the modelling of the flow physics. In the present study, the effectiveness of the simplified BEM approach was critically benchmarked against a comprehensive description of the flow field past the rotating blades coming from the combination of a two-dimensional unsteady CFD model and experimental wind tunnel tests; for both data sets, the overall performance and the wake characteristics on the mid plane of a small-scale H-shaped Darrieus turbine were available. Upon examination of the flow field, the validity of the ubiquitous use of induction factors is discussed, together with the resulting velocity profiles upstream and downstream the rotor. Particular attention is paid on the actual flow conditions (i.e. incidence angle and relative speed) experienced by the airfoils in motion at different azimuthal angles, for which a new procedure for the post-processing of CFD data is here proposed. Based on this model, the actual lift and drag coefficients produced by the airfoils in motion are analyzed and discussed, with particular focus on dynamic stall. The analysis highlights the main critical issues and flaws of the low-order BEM approach, but also sheds new light on the physical reasons why the overall performance prediction of these models is often acceptable for a first-design analysis.

Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Giacomo Persico ◽  
Vincenzo Dossena ◽  
...  

To improve the efficiency of Darrieus wind turbines, which still lacks from that of horizontal-axis rotors, computational fluid dynamics (CFD) techniques are now extensively applied, since they only provide a detailed and comprehensive flow representation. Their computational cost makes them, however, still prohibitive for routine application in the industrial context, which still makes large use of low-order simulation models like the blade element momentum (BEM) theory. These models have been shown to provide relatively accurate estimations of the overall turbine performance; conversely, the description of the flow field suffers from the strong approximations introduced in the modeling of the flow physics. In this study, the effectiveness of the simplified BEM approach was critically benchmarked against a comprehensive description of the flow field past the rotating blades coming from the combination of a two-dimensional (2D) unsteady CFD model and experimental wind tunnel tests; for both data sets, the overall performance and the wake characteristics on the midplane of a small-scale H-shaped Darrieus turbine were available. Upon examination of the flow field, the validity of the ubiquitous use of induction factors is discussed, together with the resulting velocity profiles upstream and downstream the rotor. Particular attention is paid on the actual flow conditions (i.e., incidence angle and relative speed) experienced by the airfoils in motion at different azimuthal angles, for which a new procedure for the postprocessing of CFD data is here proposed. Based on this model, the actual lift and drag coefficients produced by the airfoils in motion are analyzed and discussed, with particular focus on dynamic stall. The analysis highlights the main critical issues and flaws of the low-order BEM approach, but also sheds new light on the physical reasons why the overall performance prediction of these models is often acceptable for a first-design analysis.


Author(s):  
Li Chen ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Shuyong Zhang

Turbines used in turbochargers matched to reciprocating engines are under natural pulsating flow conditions, and the turbine which has a good performance under steady design condition normally cannot get the same performance in the whole engine actual working circle. Under the pulsating conditions, the incidence angle will change tremendously, thus leads to undesirable flowfield in the turbine. It is shown in some published literature that varying turbine blade inlet angle can achieve better performance characteristics. In this paper, leading edge curvature is introduced to an original mixed flow turbine, while steady and unsteady simulation models of the mixed flow turbine are built to investigate the aerodynamic performance of the original and modified turbine. Flowfield analysis shows that the leading edge curvature can make the flow less sensitive to the incidence change, and average instantaneous efficiency under pulsating flow conditions is improved, while a better overall performance of the turbine is achieved.


2013 ◽  
Vol 733 ◽  
Author(s):  
Kenneth O. Granlund ◽  
Michael V. Ol ◽  
Luis P. Bernal

AbstractDirect force measurements and qualitative flow visualization were used to compare flow field evolution versus lift and drag for a nominally two-dimensional rigid flat plate executing smoothed linear pitch ramp manoeuvres in a water tunnel. Non-dimensional pitch rate was varied from 0.01 to 0.5, incidence angle from 0 to 90°, and pitch pivot point from the leading to the trailing edge. For low pitch rates, the main unsteady effect is delay of stall beyond the steady incidence angle. Shifting the time base to account for different pivot points leads to collapse of both lift/drag history and flow field history. For higher rates, a leading edge vortex forms; its history also depends on pitch pivot point, but linear shift in time base is not successful in collapsing lift/drag history. Instead, a phenomenological algebraic relation, valid at the higher pitch rates, accounts for lift and drag for different rates and pivot points, through at least 45° incidence angle.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2021 ◽  
Vol 11 (2) ◽  
pp. 780
Author(s):  
Dong Liang ◽  
Xingmin Gui ◽  
Donghai Jin

In order to investigate the effect of seal cavity leakage flow on a compressor’s performance and the interaction mechanism between the leakage flow and the main flow, a one-stage compressor with a cavity under the shrouded stator was numerically simulated using an inhouse circumferentially averaged through flow program. The leakage flow from the shrouded stator cavity was calculated simultaneously with main flow in an integrated manner. The results indicate that the seal cavity leakage flow has a significant impact on the overall performance of the compressor. For a leakage of 0.2% of incoming flow, the decrease in the total pressure ratio was 2% and the reduction of efficiency was 1.9 points. Spanwise distribution of the flow field variables of the shrouded stator shows that the leakage flow leads to an increased flow blockage near the hub, resulting in drop of stator performance, as well as a certain destructive effect on the flow field of the main passage.


Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 degrees, and for three pitch-chord ratios: s/c = 0.58,0.73,0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five hole probe in a plane located at 50% of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots show in detail how much the secondary flow field is modified both by incidence and cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch averaged loss and of the deviation angle, when incidence or pitch-chord ratio is varied.


2021 ◽  
Author(s):  
Victor de Souza Rios ◽  
Arne Skauge ◽  
Ken Sorbie ◽  
Gang Wang ◽  
Denis José Schiozer ◽  
...  

Abstract Compositional reservoir simulation is essential to represent the complex interactions associated with gas flooding processes. Generally, an improved description of such small-scale phenomena requires the use of very detailed reservoir models, which impact the computational cost. We provide a practical and general upscaling procedure to guide a robust selection of the upscaling approaches considering the nature and limitations of each reservoir model, exploring the differences between the upscaling of immiscible and miscible gas injection problems. We highlight the different challenges to achieve improved upscaled models for immiscible and miscible gas displacement conditions with a stepwise workflow. We first identify the need for a special permeability upscaling technique to improve the representation of the main reservoir heterogeneities and sub-grid features, smoothed during the upscaling process. Then, we verify if the use of pseudo-functions is necessary to correct the multiphase flow dynamic behavior. At this stage, different pseudoization approaches are recommended according to the miscibility conditions of the problem. This study evaluates highly heterogeneous reservoir models submitted to immiscible and miscible gas flooding. The fine models represent a small part of a reservoir with a highly refined set of grid-block cells, with 5 × 5 cm2 area. The upscaled coarse models present grid-block cells of 8 × 10 m2 area, which is compatible with a refined geological model in reservoir engineering studies. This process results in a challenging upscaling ratio of 32 000. We show a consistent procedure to achieve reliable results with the coarse-scale model under the different miscibility conditions. For immiscible displacement situations, accurate results can be obtained with the coarse models after a proper permeability upscaling procedure and the use of pseudo-relative permeability curves to improve the dynamic responses. Miscible displacements, however, requires a specific treatment of the fluid modeling process to overcome the limitations arising from the thermodynamic equilibrium assumption. For all the situations, the workflow can lead to a robust choice of techniques to satisfactorily improve the coarse-scale simulation results. Our approach works on two fronts. (1) We apply a dual-porosity/dual-permeability upscaling process, developed by Rios et al. (2020a), to enable the representation of sub-grid heterogeneities in the coarse-scale model, providing consistent improvements on the upscaling results. (2) We generate specific pseudo-functions according to the miscibility conditions of the gas flooding process. We developed a stepwise procedure to deal with the upscaling problems consistently and to enable a better understanding of the coarsening process.


Author(s):  
Feng Wang ◽  
Luca di Mare

Abstract Turbomachinery blade rows can have non-uniform geometries due to design intent, manufacture errors or wear. When predictions are sought for the effect of such non-uniformities, it is generally the case that whole assembly calculations are needed. A spectral method is used in this paper to approximate the flow fields of the whole assembly but with significantly less computation cost. The method projects the flow perturbations due to the geometry non-uniformity in an assembly in Fourier space, and only one passage is required to compute the flow perturbations corresponding to a certain wave-number of geometry variation. The performance of this method on transonic blade rows is demonstrated on a modern fan assembly. Low engine order and high engine order geometry non-uniformity (e.g. “saw-tooth” pattern) are examined. The non-linear coupling between the flow perturbations and the passage-averaged flow field is also demonstrated. Pressure variations on the blade surface and the potential flow field upstream of the leading edge from the proposed spectral method and the direct whole assembly solutions are compared. Good agreement is observed on both quasi-3D and full 3D cases. A lumped approach to compute deterministic fluxes is also proposed to further reduce the computational cost of the spectral method. The spectral method is formulated in such a way that it can be easily implemented into an existing harmonic flow solver by adding an extra source term, and can be potentially used as an efficient tool for aeromechanical and aeroacoustics design of turbomachinery blade rows.


Author(s):  
Vekamulla Narayana

In the present study, an attempt is made to explore the flow field inside the differentially heated lid-driven square cavity. The governing equations along with boundary conditions are solved numerically. The simulated results (100 ≤ Re ≤ 1000 and 0.001 ≤ Ri ≤ 10) are validated with previous results in the literature. The convection differencing schemes, namely, UPWIND, QUICK, SUPERBEE, and SFCD, are discussed and are used to simulate the flow using the MPI code. It is observed that the computational cost for all the differencing schemes get reduced tremendously when the MPI code is implemented. Plots demonstrate the influences of Re and Ri in terms of the contours of the fluid streamlines, isotherms, energy streamlines, and field synergy principle.


Sign in / Sign up

Export Citation Format

Share Document