Redistribution of Total Temperature Through an Annular Turbine Nozzle Cascade

Author(s):  
Joshua Szczudlak ◽  
Sara Rostami ◽  
Arman Mirhashemi ◽  
Scott Morris ◽  
Greg Sluyter ◽  
...  

Flow exiting the combustor is highly turbulent and contains significant spatial gradients of pressure and temperature. The high pressure turbine nozzle vanes operating in this environment redistribute these spatial gradients and impact the inflow characteristics of the turbine rotor blades. The present study investigates the redistribution of total temperature through a turbine nozzle vane. Numerical investigation was performed using three-dimensional RANS analysis. Simulations were conducted using the Wilcox k–ω turbulence model and Shear Stress Transport (SST) with and without γ–Reθ transition model. Experimental measurements were obtained in an annular nozzle cascade facility. Two sets of inlet conditions were considered. The first was a nominally uniform total temperature. The second had a span-wise variation of total temperature. Both sets of inlet conditions had nominally the same inlet total pressure and inlet Mach number. Span-wise redistribution was evaluated using the circum-ferentially averaged total temperature profile at a plane downstream of the nozzle. Physical arguments about the influence of nozzle secondary flows on this redistribution are presented.

Author(s):  
Qingjun Zhao ◽  
Huishe Wang ◽  
Fei Tang ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

In order to reveal the effects of the hot streak/airfoil count ratio on the heating patterns of high pressure turbine rotor blades in a Vaneless Counter-Rotating Turbine, three-dimensional unsteady Navier-Stokes simulations have been performed. In these simulations, the ratio of the number of hot streaks to the number of the high pressure turbine vanes and rotors is 1:3:3, 1:2:2, 2:3:3 and 1:1:1, respectively. The numerical results show that the migration characteristics of the hot streak in the high pressure turbine rotor are predominated by the combined effects of secondary flow and buoyancy. The combined effects induce the high temperature fluid migrate towards the hub in the high pressure turbine rotor. And the combined effects become more intensified when the hot streak/airfoil count ratio increases. The results also indicate that the peak temperature of the hot streak is dissipated as the hot streak goes through the high pressure turbine vane or the rotor. The dissipated extent of the peak temperature in the high pressure turbine stator and the rotor is increased as the hot streak-to-airfoil ratio increases. And the increase of the hot streak/airfoil count ratio trends to increase the relative Mach number at the high pressure turbine outlet. The relative flow angle from 23% to 73% span at the high pressure turbine outlet decreases as the hot streak-to-airfoil ratio increases. The results also indicate that the isentropic efficiency of the Vaneless Counter-Rotating Turbine is decreased as the hot streak/airfoil count ratio increases.


Author(s):  
Hun G. Lee ◽  
Jung Y. Yoo ◽  
Jun W. Yun

Three dimensional turbulent incompressible flows through linear cascades of turbine rotor blades with high turning angles have been analyzed numerically by using a generalized k-ε model which is a high Reynolds number form and derived by RNG (renormalized group) method to account for the variation of the rate of strain. A second order upwind scheme is used to suppress numerical diffusion in approximating the convective terms. Boundary-fitted coordinates are adopted to represent the complex blade geometry accurately. For the case without tip clearance, secondary flows and flow losses are shown to be in good agreement with previous experimental results. For the case with tip clearance, the effects of the passage vortex and tip clearance flow on the total pressure loss as well as their interactions are discussed. The flow within the tip clearance has been analyzed to illustrate the existences of the tip clearance vortex and vena contracta.


Author(s):  
W D Morris

This paper describes a new research facility designed to study the effect of rotation on heat transfer in the cooling channels of gas turbine rotor blades. Rotation influences cooling performance via secondary flows generated because of Coriolis forces and centripetal buoyancy. The resulting complex three-dimensional flow creates asymmetric heat transfer over the channel surface. The research facility has been designed to permit experiments to be undertaken that are near to actual engine conditions. The paper includes details of the design philosophy, construction and commissioning of the facility, together with a selection of experimental data.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


Author(s):  
Huimin Tang ◽  
Shuaiqiang Liu ◽  
Hualing Luo

Profiled endwall is an effective method to improve aerodynamic performance of turbine. This approach has been widely studied in the past decade on many engines. When automatic design optimisation is considered, most of the researches are usually based on the assumption of a simplified simulation model without considering cooling and rim seal flows. However, many researchers find out that some of the benefits achieved by optimization procedure are lost when applying the high-fidelity geometry configuration. Previously, an optimization procedure has been implemented by integrating the in-house geometry manipulator, a commercial three-dimensional CFD flow solver and the optimization driver, IsightTM. This optimization procedure has been executed [12] to design profiled endwalls for a turbine cascade and a one-and-half stage axial turbine. Improvements of the turbine performance have been achieved. As the profiled endwall is applied to a high pressure turbine, the problems of cooling and rim seal flows should be addressed. In this work, the effects of rim seal flow and cooling on the flow field of two-stage high pressure turbine have been presented. Three optimization runs are performed to design the profiled endwall of Rotor-One with different optimization model to consider the effects of rim flow and cooling separately. It is found that the rim seal flow has a significant impact on the flow field. The cooling is able to change the operation condition greatly, but barely affects the secondary flow in the turbine. The influences of the profiled endwalls on the flow field in turbine and cavities have been analyzed in detail. A significant reduction of secondary flows and corresponding increase of performance are achieved when taking account of the rim flows into the optimization. The traditional optimization mechanism of profiled endwall is to reduce the cross passage gradient, which has great influence on the strength of the secondary flow. However, with considering the rim seal flows, the profiled endwall improves the turbine performance mainly by controlling the path of rim seal flow. Then the optimization procedure with consideration of rim seal flow has also been applied to the design of the profiled endwall for Stator Two.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2018 ◽  
Vol 20 (6) ◽  
pp. 653-669 ◽  
Author(s):  
Trung Hieu Nguyen ◽  
Phuong Nguyen-Tri ◽  
Xavier Vancassel ◽  
Francois Garnier

Precise investigation of aero-thermodynamic and chemical processes relating to environmental precursor pollutants in an aircraft turbine is challenging because of the complexity of transformation processes at high temperature and high pressure. We present here, for the first time, new insights into the study of aero-thermodynamic processes, formation of nitrate and sulfate aerosol precursors, and investigate the influence of chemical processes on aero-thermodynamics. We also shed light on the effect of three-dimensional blade profile, radial spacing, and rotor speed on the performance of a high-pressure turbine. We highlight that flow vortex and the variation of chemical formation which appear in both rear stator blades and rear rotor blades. We found that the chemical processes were affected by the evolution of temperature (maximum of 16.9%) and flow velocity (maximum of 38.8%). Contrary to the conservative one-dimensional and two-dimensional modeling, which provide only the flow trends and flow evolution at cylindrical surface, respectively, our three-dimensional modeling approach offers the possibility of combining information on radial spacing and rotor-speed effect by providing three-dimensional images of spatial-geometry effect on aero-thermodynamic and chemical processes. Quantitatively, the magnitude of change in aero-thermodynamics and nitrogen oxidation may be expected to be up to 17% and 48%, respectively, over a stage of the high-pressure turbine.


2004 ◽  
Vol 126 (1) ◽  
pp. 110-121 ◽  
Author(s):  
Paul W. Giel ◽  
Robert J. Boyle ◽  
Ronald S. Bunker

Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 127 deg of nominal turning and an axial chord of 130 mm. Data were obtained for a set of four exit Reynolds numbers comprised of the facility maximum point of 2.50×106, as well as conditions which represent 50%, 25%, and 15% of this maximum condition. Three ideal exit pressure ratios were examined including the design point of 1.443, as well as conditions which represent −25% and +20% of the design value. Three inlet flow angles were examined including the design point and ±5deg off-design angles. Measurements were made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific conditions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also show good detail in the stagnation region.


Author(s):  
Dieter Bohn ◽  
Bernd Rudzinski ◽  
Norbert Sürken ◽  
Wolfgang Gärtner

The phenomenon of hot gas ingestion through turbine rim seals is experimentally and numerically investigated for a complete stage with nozzle guide vanes and uncooled helicopter turbine rotor blades. In the experimental part, two different geometrical rim seal configurations are examined: 1. a simple axial gap between rotor and stator disk and 2. an axial gap between the rotor disk and a rim seal lip at the periphery of the stator disk. The results obtained are compared to experiments carried out for the same geometry but without rotor blades. The influence of the presence of rotor blades on hot gas ingestion is examined for different parameters such as nondimensional seal flow rate, Reynolds number in the turbine annulus and rotational speed. For the determination of the sealing efficiency measurements of carbon dioxide gas concentration are carried out in the wheelspace. The static pressure distribution in the cavity is measured by means of pressure taps at the stator disk. It is shown that for configuration 1 the presence of rotor blades causes a considerable drop in sealing efficiency whereas for configuration 2 the sealing efficiency increases significantly. In the numerical part results of three-dimensional unsteady CFD calculations for configuration 2 are compared to steady calculations for the same configuration without blades. Predictions of hot gas ingestion and carbon dioxide gas concentration in the hub region and inside the cavity are presented. Special emphasis is put on unsteady effects arising from rotor movement. A local ingestion zone rotating at approximately half rotor speed is numerically predicted. As indicated by the experimental results the rotor blades have a positive influence on the predicted sealing efficiency.


2021 ◽  
pp. 1-14
Author(s):  
Andrea Notaristefano ◽  
Paolo Gaetani

Abstract The harsh environment exiting modern gas turbine combustion chamber is characterized by vorticity and temperature perturbations, the latter commonly referred as entropy waves. The interaction of these unsteadiness with the first turbine stage causes non-negligible effects on the aerodynamic performance, blade cooling and noise production. The first of these drawbacks is addressed in this paper by means of an experimental campaign: entropy waves and swirl profile are injected upstream of an axial turbine stage through a novel combustor simulator. Two injection positions and different inlet conditions are considered. Steady and unsteady experimental measurements are carried out through the stage to address the combustor-turbine interaction characterizing the injected disturbance, the nozzle and rotor outlet aerothermal field. The experimental outcomes show a severe reduction of the temperature perturbation already at stator outlet. The generated swirl profile influences significantly the aerodynamic, as it interacts with the stator and rotor secondary flows and wakes. Furthermore, the clocking position changes the region most affected by the disturbance, showing a potential modifying the injection position to minimize the entropy wave and swirl profile impact on the stage. Finally, this work shows that in order to proficiently study entropy waves, the unsteady aerodynamic flow field stator downstream has to be addressed.


Sign in / Sign up

Export Citation Format

Share Document