Effects of Combustor Enclosure Flow Path on Combustor Design

Author(s):  
Alejandro M. Briones ◽  
Nathan Thomas ◽  
Brent A. Rankin

Abstract A design optimization procedure was implemented to resize the holes of a combustor liner for practical applications. A combustor geometry evaluated without an enclosure was to be reformulated within an enclosure. The objective functions of the combustor with enclosure involved targeting the flow splits of the combustor without enclosure. Latin Hypercube Sampling (LHS) design of experiments (DOE) was utilized to obtain at least a pure quadratic response surface (RS). These were computed using Genetic Aggregate (GA). These RS were, in turn, evaluated by a multiple objective genetic algorithm (MOGA) optimizer. The focus of this study was a small-scale cavity-stabilized combustor. Steady, compressible three-dimensional simulations are performed using a multi-phase Realizable k-ε Reynolds-averaged Navier-Stokes (RANS) approach. Combustion-turbulence interaction is modeled with flamelet progress variable (FPV) and β-presumed probability density function (PDF). There are eleven input and output parameters corresponding to the combustor hole sizes and associated mass flow rates. The RS obtained with GA were principally of the Kriging kind (with constant and linear trends and damped sinusoid and Gaussian kernels). A combustor hole mass flow rate was mainly determined by its hole size but was also influenced by the other holes. The combustor flow split non-linearity shows that increasing a hole size increases its mass flow rate, but simultaneously decreases another hole flow rate. This was also verified by sensitivity analysis. Due to this non-linearity, matching flow splits between geometry without and with enclosure is challenging and may not be possible for some situations. Thus, it is concluded that optimization of the combustor geometry without the enclosure is not the best route. Rather, it would be better for the geometry to be optimized with the enclosure included in order to account for flow separation and non-linear influence of the combustor holes on the flow field.

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng ◽  
Lei Shi

The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.


Author(s):  
Rayapati Subbarao ◽  
M. Govardhan

Abstract In a Counter Rotating Turbine (CRT), the stationary nozzle is trailed by two rotors that rotate in the opposite direction to each other. Flow in a CRT stage is multifaceted and more three dimensional, especially, in the gap between nozzle and rotor 1 as well as rotor 1 and rotor 2. By varying this gap between the blade rows, the flow and wake pattern can be changed favorably and may lead to improved performance. Present work analyzes the aspect of change in flow field through the interface, especially the wake pattern and deviation in flow with change in spacing. The components of turbine stage are modeled for different gaps between the components using ANSYS® ICEM CFD 14.0. Normalized flow rates ranging from 0.091 to 0.137 are used. The 15, 30, 50 and 70% of the average axial chords are taken as axial gaps in the present analysis. CFX 14.0 is used for simulation. At nozzle inlet, stagnation pressure boundary condition is used. At the turbine stage or rotor 2 outlet, mass flow rate is specified. Pressure distribution contours at the outlets of the blade rows describe the flow pattern clearly in the interface region. Wake strength at nozzle outlet is more for the lowest gap. At rotor 1 outlet, it is less for x/a = 0.3 and increases with gap. Incidence angles at the inlets of rotors are less for the smaller gaps. Deviation angle at the outlet of rotor 1 is also considered, as rotor 1-rotor 2 interaction is more significant in CRT. Deviation angle at rotor 1 outlet is minimum for this gap. Also, for the intermediate mass flow rate of 0.108, x/a = 0.3 is giving more stage performance. This suggests that at certain axial gap, there is better wake convection and flow outline, when compared to other gap cases. Further, it is identified that for the axial gap of x/a = 0.3 and the mean mass flow rate of 0.108, the performance of CRT is maximum. It is clear that the flow pattern at the interface is changing the incidence and deviation with change in axial gap and flow rate. This study is useful for the gas turbine community to identify the flow rates and gaps at which any CRT stage would perform better.


Author(s):  
Pablo Fernández del Campo ◽  
Fletcher Miller ◽  
Adam Crocker

We present an investigation of the effects of the solar irradiation and mass flow conditions on the behavior of a Small Particle Solar Receiver employing our new, three-dimensional coupled fluid flow and radiative heat transfer model. This research expands on previous work conducted by our group and utilizes improved software with a set of new features that allows performing more flexible simulations and obtaining more accurate results. For the first time, it is possible not only to accurately predict the overall efficiency and the wall temperature distribution of the solar receiver, but also to determine the effect on the receiver of the window, the outlet tube, real solar irradiation from a heliostat field, non-cylindrical geometries and 3-D effects. This way, a much better understanding of the receiver’s capabilities is obtained. While the previous models were useful to observe simple trends, this new software is flexible and accurate enough to eventually act as a design and optimization tool for the actual receiver. The solution procedure relies on the coupling of the CFD package ANSYS Fluent to our in-house Monte Carlo Ray Trace (MCRT) software. On the one hand, ANSYS Fluent is utilized as the mass-, momentum- and energy-equation solver and requires the divergence of the radiative heat flux, which constitutes a source term of the energy equation. On the other hand, the MCRT software calculates the radiation heat transfer in the solar receiver and needs the temperature field to do so. By virtue of the coupled nature of the problem, both codes should provide feed-back to each other and iterate until convergence. The coupling between ANSYS Fluent and our in-house MCRT code is done via User-Defined Functions. After developing the mathematical model, setting up and validating the software, and optimizing the coupled solution procedure, the receiver has been simulated under fifteen different solar irradiation and mass flow rate cross combinations. Among other results, the behavior of the receiver at different times of the day and the optimum mass flow rate as a function of the solar thermal input are presented. On an average day, the thermal efficiency of the receiver is found to be over 89% and the outlet temperature over 1250 K at all times from 7:30 AM to 4:00 PM (Albuquerque, NM) by properly adapting the mass flow rate. The origin of the losses and how to improve the efficiency of the Small Particle Solar Receiver are discussed as well.


Author(s):  
Arthur M. Omari ◽  
John P. John ◽  
Baraka Kichonge

In this study, a Computational Fluid Dynamics (CFD) technique was used to develop a model for the simulation and flow conditions of the incinerator. The CFD technique are based on subdividing the volume of interest, i.e., the combustion chamber (or other parts of the plant) into a grid of elementary volumes. The relevant equations of conservation (mass, momentum, energy) are then applied to each of those elements, after defining all inputs, outputs and boundary conditions. The resulting system is then integrated from start to finish, after introducing momentum, mass and heat transfer. The objective of the study was to evaluate and optimize the performance of locally available incinerators in Tanzania. The small scale municipal solid waste incinerator modelling was done by using a fluent solver. The case study of the existing incinerator at a Bagamoyo hospital in Tanzania was used as a model and the obtained values were compared with simulated results and other publications for validation. The design optimization using CFD techniques to predict the performance of incinerator showed the deviation of input air by 14%, the mass flow rate by 26.5%, the mass fraction of carbon dioxide by 10.4% and slight deviation of nitrogen dioxide and carbon monoxide. The study suggested removing the ash during the incineration process by using a moving grate mechanism to minimize the possibility of formation of NOX. The study found the maximum mass flow rate capacity of incinerator to be 68kg/h with input air A1 as 0.03639 kg/s, input air A2 as 0.03046 kg/s and input air A3 as 0.03409 kg/s. The findings indicated that as capacity is scaled up, the available momentum declines relative to the dimensions of the furnace.


Author(s):  
Ying Zhang ◽  
Arun Kumar Narasimhan ◽  
Mengjie Bai ◽  
Li Zhao ◽  
Shuai Deng ◽  
...  

Abstract Solar driven ORC system is a possible solution for small-scale power generation. A scroll expander is considered due to its better suitability among other positive displacement expanders for small-scale power outputs. This work conducted a test of an ORC system with an expansion valve by varying the working fluid mass flow rate in two scenarios. A dynamic system-level model of ORC was developed and validated with experimental data. The validated model was used to predict the ORC performance considering off-design conditions of expander and solar insolation. The experimental data showed that pressures and temperatures exhibited the same trend as that of the working fluid mass flow rate, of which the evaporation pressure was the most sensitive to this variation. The simulation results are in good agreement with the experimental results. Results from the dynamic model showed that the ORC power output was underestimated by up to 54.7%, when off-design performance of expander was not considered. Considering the expander off-design performance and solar insolation, a highest thermal efficiency of 7.6% and an expander isentropic efficiency of 80.6% were achieved.


Author(s):  
Yaping Liu ◽  
Xuefei Du ◽  
Xuyang Shi ◽  
Diangui Huang

This paper investigates spontaneous condensation of wet steam in a centrifugal turbine by means of three-dimensional computational fluid dynamics. The flow field and aerodynamic characteristics of the wet steam in the centrifugal turbine are compared and analyzed by using the equilibrium steam and nonequilibrium steam models, respectively, where the latter applies the classical droplet nucleation theory and neglects velocity slip between the liquid phase and the gaseous phase. The state parameters of wet steam are described here based on the IAPWS’97 formulation. It is concluded that under the design condition, the mass flow rate, wetness fraction, and flow angle of the wet steam centrifugal turbine in the nonequilibrium steam model all change compared with the equilibrium steam model, with values of 4.4%, 0.5%, and 10.57%, respectively. Then the performance variation of the wet steam centrifugal turbine is analyzed under different steam conditions and different outlet back-pressure conditions. The results show that the change law of the mass flow rate, shaft power, and wetness fraction in the centrifugal turbine are basically identical in both models, and the mass flow rate, shaft power, wheel efficiency, and entropy loss coefficient of the centrifugal turbine in the nonequilibrium steam model are all higher than those in the equilibrium steam model, whereas the outlet wetness fraction is lower than that in the equilibrium steam model.


2021 ◽  
pp. 1-41
Author(s):  
Gaurav Singh ◽  
Ranjan Das

Abstract In this paper, a new small-scale lithium bromide (LiBr)-water absorption system consisting water-cooled evaporator and air-cooled condenser is experimentally studied. For compactness, water-cooled heat exchangers for evaporator, absorber and generator are made helical-coiled type, whereas, based on the water availability and load requirements, condenser is air-cooled. Accurate empirical correlations for thermal load and evaporator temperature against system driving factors concerning a have been reported. Thereafter, response surface analysis of the developed performance parameters are studied with respect to LiBr concentration, temperature of generator and mass flow rate of hot water. Using experimental data, estimation of overall heat transfer coefficient (U) and its variation with system driving factors is quantified. The error margin between theoretical and actual pressure loss is limited within 5 %. Next, a multi-objective inverse analysis of the developed system is done to simultaneously retrieve the required LiBr concentration, mass flow rate of hot water, and vapor generator temperature to derive a desired cooling performance demand from the system. The obtained U values for all the components are found to be in line with the standard data. The physics related to salt concentration and generator temperature in governing U values are reported. Apart from the developed correlations, it can be established that the necessary operational parameters can be predicted by the present multi-objective inverse method to meet the necessary thermal load and temperature demands within an accuracy level of 6 % and 5 %, respectively.


Sign in / Sign up

Export Citation Format

Share Document