Detection of Cracks in Turbomachinery Blades by Online Monitoring

Author(s):  
Manish Kumar ◽  
Roger Heinig ◽  
Mark Cottrell ◽  
Christian Siewert ◽  
Henning Almstedt ◽  
...  

Abstract The presence of a crack in a blade can change the natural frequencies of that blade. It has long been a goal to detect blade cracks by assessing the change in a measured vibration frequency of the blade over time. It has been found that prior frequency assessment methods can be less accurate than is desirable to reliably detect the relatively small frequency changes that are typically associated with blade crack sizes of practical interest. This paper describes a method in which potential temporal changes in the frequencies of individual blades are assessed by periodically analyzing complete rows of blades using mistuning analysis techniques that treat the blade rows as coupled systems, in contrast to other techniques that consider each blade individually in turn. This method, while computationally complicated and challenging, has been found to be capable of detecting blade root cracks that are much smaller than those that can be detected using other techniques. Moreover, this method has been demonstrated to detect cracks that are much smaller than the critical size for mechanical separation of the blade from the rotor. This improved frequency assessment technique has been used to identify more than 30 blades with frequency changes that were considered to be potential indicators of blade cracks. Subsequent inspections verified indications in all of those blades. In addition to providing operational guidance, the frequency change data were used to infer the time periods during which crack growth had occurred.

Author(s):  
Gilbert-Rainer Gillich ◽  
Zeno-Iosif Praisach ◽  
Claudiu Mirel Iavornic

The paper presents a method to detect, locate and evaluate damage severity of Euler-Bernoulli beams, based on how natural frequencies change due to damages. Previous researches that dealt with this issue focused only on quantitative changes, mainly considering a global stiffness reduction in the damaged area. The authors have contrived a correlation between the strain energy stored in a segment of the beam, which is proportional with the mode shape curvature of a considered vibration mode at that location, and the frequency change for this mode if damage appears on that segment. This reveals that for an element of the beam, the stiffness change of a certain mode for a given damage varies between zero and a maximum, depending solely on the location of that element. Moreover, one has to consider different stiffness changes for a damaged element placed on a certain location, depending on the vibration mode. This rule how frequencies of various modes change due to damage are used to create patterns, based on relative frequency shifts, which characterize damaged beams in respect to defect location and severity. The method was validated by numerous experiments, which proved its accuracy and reliability.


1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


1977 ◽  
Vol 55 (17) ◽  
pp. 1499-1509 ◽  
Author(s):  
S. Schneider ◽  
R. Spitzer

The interaction in a frequency-dispersive medium of a coherent electromagnetic wave with an electron moving faster than a critical (Mach) speed produces electromagnetic radiation with novel characteristics. Theory predicts emission of intense radiation in the form of shock fronts at specific angles from the electron trajectory. The shock fronts are correlated with specific frequencies shifted significantly from that of the incident wave. We have named this effect stimulated electromagnetic shock radiation (SESR). The shock frequencies depend dynamically on the populations of the energy levels that give rise to the medium resonances. A given shock frequency changes from below to above the resonance frequency of the medium with which it is associated as the populations of the two energy levels corresponding to this resonance frequency change from an equilibrium distribution to an inverted one. This dynamic resonance crossing points to the possibility of new synergisms between SESR emission and stimulated emission between discrete levels.


2010 ◽  
Vol 26 (2) ◽  
pp. 371-397 ◽  
Author(s):  
Kun-Sung Liu ◽  
Yi-Ben Tsai

The safety of building structures and contents, as well as the comfort of occupants, under such strong forces as earthquakes and typhoons remain major engineering concerns. In order to improve our understanding of building structural responses, records of a structural array in the 30-story PS Building in Taipei from the M7.6 Chi-Chi earthquake and Typhoon Aere are analyzed. In addition, wind data measured at the Taipei Meteorological Station are also used. First, the field measurement data clearly demonstrate that serviceability of the PS Building met the criteria for occupant comfort during Typhoon Aere. Secondly, several structural vibration parameters of this highrise building, including the transfer functions, natural frequencies, damping ratios and mode shapes, excited by the Chi-Chi earthquake, Typhoon Aere, and ambient vibrations are also determined and compared. The results show the frequency of the first mode for the longitudinal components is approximately 8.6% lower for the earthquake than the ambient vibrations. The transverse mode frequencies behave similarly. In contrast, frequency changes from the typhoon to ambient vibrations are in the third decimal (1.3% and 0.9% lower in the longitudinal and transverse directions, respectively), indicating little nonlinearity. The damping ratios of the PS Building apparently increase with vibration amplitudes. Finally, results of a spectral ratio analysis of the Chi-Chi earthquake data do not indicate significant SSI effects in the longitudinal and transverse directions.


2009 ◽  
Vol 23 (30) ◽  
pp. 5715-5726
Author(s):  
YONG LIU

Phase synchronization between linearly and nonlinearly coupled systems with internal resonance is investigated in this paper. By introducing the conception of phase for a chaotic motion, it demonstrates that the detuning parameter σ between the two natural frequencies ω1and ω2affects phase dynamics, and with the increase in the linear coupling strength, the effect of phase synchronization between two sub-systems was enhanced, while increased firstly, and then decayed as nonlinear coupling strength increases. Further investigation reveals that the transition of phase states between the two oscillators are related to the critical changes of the Lyapunov exponents, which can also be explained by the diffuse clouds.


2018 ◽  
Vol 23 (3) ◽  
pp. 152-164 ◽  
Author(s):  
Chun Liang ◽  
Lisa M. Houston ◽  
Ravi N. Samy ◽  
Lamiaa Mohamed Ibrahim Abedelrehim ◽  
Fawen Zhang

The purpose of this study was to examine neural substrates of frequency change detection in cochlear implant (CI) recipients using the acoustic change complex (ACC), a type of cortical auditory evoked potential elicited by acoustic changes in an ongoing stimulus. A psychoacoustic test and electroencephalographic recording were administered in 12 postlingually deafened adult CI users. The stimuli were pure tones containing different magnitudes of upward frequency changes. Results showed that the frequency change detection threshold (FCDT) was 3.79% in the CI users, with a large variability. The ACC N1’ latency was significantly correlated with the FCDT and the clinically collected speech perception score. The results suggested that the ACC evoked by frequency changes can serve as a useful objective tool in assessing frequency change detection capability and predicting speech perception performance in CI users.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 400 ◽  
Author(s):  
Alexandre Rêgo ◽  
Samridhi Chaturvedi ◽  
Amy Springer ◽  
Alexandra M. Lish ◽  
Caroline L. Barton ◽  
...  

Genes that affect adaptive traits have been identified, but our knowledge of the genetic basis of adaptation in a more general sense (across multiple traits) remains limited. We combined population-genomic analyses of evolve-and-resequence experiments, genome-wide association mapping of performance traits, and analyses of gene expression to fill this knowledge gap and shed light on the genomics of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus maculatus. Using population-genomic approaches, we detected modest parallelism in allele frequency change across replicate lines during adaptation to lentil. Mapping populations derived from each lentil-adapted line revealed a polygenic basis for two host-specific performance traits (weight and development time), which had low to modest heritabilities. We found less evidence of parallelism in genotype-phenotype associations across these lines than in allele frequency changes during the experiments. Differential gene expression caused by differences in recent evolutionary history exceeded that caused by immediate rearing host. Together, the three genomic datasets suggest that genes affecting traits other than weight and development time are likely to be the main causes of parallel evolution and that detoxification genes (especially cytochrome P450s and beta-glucosidase) could be especially important for colonization of lentil by C. maculatus.


1997 ◽  
Vol 69 (3) ◽  
pp. 227-232 ◽  
Author(s):  
L. OLLIVIER ◽  
L. A. MESSER ◽  
M. F. ROTHSCHILD ◽  
C. LEGAULT

Gene frequency changes following selection may reveal the existence of gene effects on the trait selected. Loci for the selected quantitative trait (SQTL) may thus be detected. Additionally, one can estimate the average effect (α) of a marker allele associated with an SQTL from the allele frequency change (Δq) due to selection of given intensity (i). In a sample of unrelated individuals, it is optimal to select the upper and lower 27% for generating Δq in order to estimate α. For a given number of individuals genotyped, this estimator is 0·25i2 times more efficient than the classical estimator of α, based on the regression of the trait on the genotype at the marker locus. The method is extended to selection criteria using information from relatives, showing that combined selection considerably increases the efficiency of estimation for traits of low heritability. The method has been applied to the detection of SQTL in a selection experiment in which the trait selected was pig litter size averaged over the first four parities, with i=3. Results for four genes are provided, one of which yielded a highly significant effect. The conditions required for valid application of the method are discussed, including selection experiments over several generations. Additional advantages of the method can be anticipated from determining gene frequencies on pooled samples of blood or DNA.


2010 ◽  
Vol 160-162 ◽  
pp. 65-70
Author(s):  
Zhen Yu Feng ◽  
Zhao Chen Chen ◽  
Jie Wen Hu ◽  
Qian Yang ◽  
Tian Chun Zou

With the extensive use of composite materials in aviation industry, the research of factors which affect their basic performances in production and usage has become very important. In this paper, a finite element analysis model is built by the commercial software MSC.Nastran / Patran to research the effect of fiber lay-up direction misalignment on the natural frequency of composite laminates. The results show that, in the same boundary conditions, stacking sequence has a significant impact on the natural frequencies and vibration modes of composite laminates, and in the lay-up process, the natural frequency change of laminates caused by 0° fiber lay-up direction misalignment is much larger than the natural frequency change of laminates due to 90° fiber lay-up direction misalignment. In the process control and certification of composite laminate plates lay-up, special attention should be taken to the inspection of 0° direction fibers.


2003 ◽  
Vol 19 (3) ◽  
pp. 373-387
Author(s):  
Y.-F. Li ◽  
S.-Y. Chang ◽  
W.-C. Tzeng ◽  
K. Huang

AbstractIn this paper, the analysis of the responses of the pseudo dynamic test of two rectangular reinforced concrete (RC) bridge columns using the Hilbert-Huang transform (HHT) is introduced. Firstly, two 40%-scaled rectangular RC bridge columns are subjected to the pseudo dynamic test. The input of the pseudo dynamic test is set as the near-fault ground accelerations of the Chi-Chi Earthquake, which happened in 1999 in central Taiwan. After damage occurs to the bridge columns, we use non-shrinkage mortar to repair the columns, and then use 3 layers of CFRP to rehabilitate their plastic zone. The repaired bridge columns are again tested. Then we use the HHT to analyze the responses of the as-built and repaired bridge columns. The merit of applying the HHT to the responses of bridge columns is that it can transfer the displacement-time responses into instantaneous frequency responses, while the spectra are a function of both frequency and time. We can observe from the Hilbert spectra of the bridge columns that, at the instant when the frequency changes, the structural behavior changes from elastic to inelastic. The HHT can therefore be used to obtain the instantaneous natural frequencies of the bridge columns and to understand the relationship between the frequency changes and stiffness condition of the bridge columns.


Sign in / Sign up

Export Citation Format

Share Document