Micro-, Macromechanical and Aeroelastic Investigation of Glass-Fiber Based, Lightweight Turbomachinery Components

Author(s):  
Senad Iseni ◽  
Mahesh Ramaswamy Guru Prasad ◽  
Alexander Hartmaier ◽  
Klaudiusz Holeczek ◽  
Niels Modeler ◽  
...  

Abstract A major technical challenge for modern aero engines is the development of designs which reduce noise and emission whilst increasing aerodynamic efficiency and ensuring aeroelastic stability of low-temperature engine components such as fans and low-pressure compressors. Composites are used in aviation due to their excellent stiffness and strength properties, which also enable additional flexibility in the design process. The weight reduction of the turbomachine components, due to composite materials and lighter engines, is especially relevant for the design and developments of hybrid-electric or distributed propulsion systems [1]. To accomplish this, a representative volume element (RVE) of a glass-fiber reinforced polymer is created, describing the geometrical arrangement of the textile reinforcement structure within the polymer matrix. For both phases, realistic linear elastic properties are assumed. This RVE will be investigated with the finite element method under various loading conditions to assess its anisotropic elastic properties and also its damping behaviour for elastic waves. To study the influence of delamination on the mechanical properties, small defects will be introduced into the model at the interface between reinforcement and matrix. Based on this micromechanical approach, a constitutive model for the composite will be formulated that describes the anisotropic properties as well as the damping behaviour. This constitutive model is then used to describe the material response in a macro-mechanical model, which serves as the basis for an aeroelastic analysis of a 1/3-scaled high-speed fan using a conventional (Ti-6Al-4V) and fiber composite material.


Vestnik MGSU ◽  
2021 ◽  
pp. 1191-1216
Author(s):  
Alexander N. Polilov ◽  
Nikolay A. Tatus’

Introduction. The article is devoted an analytical overview of the methods of applying the Nature solutions for designing structures made of plastics reinforced with fibers, in particular, using rational curved fiber trajectories. The first section provides an overview of different structural models and some approaches to the micromechanics of composites. Materials and methods. Sections 2-7 discuss: analysis of rational elastic-strength properties of wood and composites for crack arrest by weak interface; methods for constructing curved paths of fibers of “flowing holes”; analyzes the applied and promising technologies for manufacturing attachment points, in which holes are formed using curvilinear fiber paths; “nature-inspired” principles of optimal design of pipe composite structures similar in structure to ladder of bamboo stalk; examples of the effective use of fibrous composites in elastic elements such as leaf springs; developing additive technologies for 3D printing of fiber composite parts with fiber laying along calculated trajectories. Results. Each section of the article presents conclusions related to the peculiarities of composites structures calculation and design: calculations show that in order to increase the crack resistance of fibrous composites, it is necessary to significantly increase the shear characteristics of the binder and strive for rational properties created by Nature in wood; as a result of the calculation, it turns out that the maximum stress per fiber at the optimal reinforcement structure becomes about 3–4 times less than with a uniform rectilinear laying; rational reinforcement leads to a significant reduction in local stresses per fiber, elimination of splits and damages of fibers and an increase in the carrying capacity of the assembly; it has been shown that the bamboo rings are arranged to prevent the barrel from splitting from bending compressive stresses and tangential stresses when the barrel is twisted by wind load; analyzed the relationship of equal-strength profiling with Leonardo’s rule for tree crown branching. The works on creation of bio-similar shape and structure of curvilinear reinforcement of specimens for correct determination of unidirectional composites strength at tension along fibres were discussed; analyzed the role of composite technologies in modern mechanical engineering, in particular, in the creation of composite structures in open space. Conclusions. The article is devoted to the analysis of the tasks of fibrous composites macromechanics, therefore, in the opinion of the authors, the three most promising and related areas in macromechanics of composites that require further research are biomechanics of strength, computer modeling of optimal structures and technological mechanics of composites.



2019 ◽  
Vol 777 (12) ◽  
pp. 73-77
Author(s):  
B.A. BONDAREV ◽  
◽  
T.N. STORODUBTSEVA ◽  
D.A. KOPALIN ◽  
S.V. KOSTIN ◽  
...  


2021 ◽  
Vol 11 (11) ◽  
pp. 4933
Author(s):  
Ji-Sang Yahng ◽  
Dae-Su Yee

Composite materials are increasingly being utilized in many products, such as aircrafts, wind blades, etc. Accordingly, the need for nondestructive inspection of composite materials is increasing and technologies that allow nondestructive inspection are being studied. Existing ultrasound methods are limited in their ability to detect defects due to high attenuation in composite materials, and radiographic examination methods could pose a danger to human health. Terahertz (THz) wave technology is an emerging approach that is useful for imaging of concealed objects or internal structures due to high transmittance in non-conductive materials, straightness, and safety to human health. Using high-speed THz tomography systems that we developed, we have obtained THz tomographic images of glass-fiber-reinforced polymer (GFRP) laminates with artificial internal defects such as delamination and inclusion. The defects have various thicknesses and sizes, and lie at different depths. We present THz tomographic images of GFRP samples to demonstrate the extent to which the defects can be detected with the THz tomography systems.



Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.



2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.







Sign in / Sign up

Export Citation Format

Share Document