Analysis of Measured and Predicted Turbine Maps From Start-Up to Design Point

Author(s):  
Alberto Scotti del Greco ◽  
Sara Biagiotti ◽  
Vittorio Michelassi ◽  
Tomasz Jurek ◽  
Daniele Di Benedetto ◽  
...  

Abstract This paper describes a coupled experimental and CFD campaign conducted on a 1.5 intermediate turbine stage in the full range of operating conditions, from start-up to design point under variable expansion ratio and physical speed. The test maintains engine similitude conditions and allows direct comparison with CFD data to assess the predictions accuracy. The choice of variables to describe the speedlines is also addressed by using both measured and predicted data. A discussion on velocity ratio versus corrected speed illustrates the advantages of the former parameter the adoption of which produces constant shape curves in a very wide range of operating conditions. The comparison between measurements and predictions suggests that CFD, in conjunction with performance correlations, is a viable tool to predict speedlines in a fairly wide range of conditions, provided that geometrical and operational details are carefully matched.

2021 ◽  
Vol 13 (15) ◽  
pp. 8620
Author(s):  
Sanaz Salehi ◽  
Kourosh Abdollahi ◽  
Reza Panahi ◽  
Nejat Rahmanian ◽  
Mozaffar Shakeri ◽  
...  

Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.


Author(s):  
Robert Pelton ◽  
Sewoong Jung ◽  
Tim Allison ◽  
Natalie Smith

Supercritical carbon dioxide (sCO2) power cycles require high compressor efficiency at both the design point and over a wide operating range. Increasing the compressor efficiency and range helps maximize the power output of the cycle and allows operation over a broader range of transient and part-load operating conditions. For sCO2 cycles operating with compressor inlets near the critical point, large variations in fluid properties are possible with small changes in temperature or pressure. This leads to particular challenges for air-cooled cycles where compressor inlet temperature and associated fluid density are subject to daily and seasonal variations as well as transient events. Design and off-design operating requirements for a wide-range compressor impeller are presented where the impeller is implemented on an integrally geared compressor–expander concept for a high temperature sCO2 recompression cycle. In order to satisfy the range and efficiency requirements of the cycle, a novel compressor stage design incorporating a semi-open impeller concept with a passive recirculating casing treatment is presented that mitigates inducer stall and extends the low flow operating range. The stage design also incorporates splitter blades and a vaneless diffuser to maximize efficiency and operating range. These advanced impeller design features are enabled through the use of direct metal laser sintering (DMLS) manufacturing. The resulting design increases the range from 45% to 73% relative to a conventional closed impeller design while maintaining high design point efficiency.


Author(s):  
M. S. N. Murthy ◽  
Subhash Kumar ◽  
Sheshadri Sreedhara

Abstract A gas turbine engine (GT) is very complex to design and manufacture considering the power density it offers. Development of a GT is also iterative, expensive and involves a long lead time. The components of a GT, viz compressor, combustor and turbine are strongly dependent on each other for the overall performance characteristics of the GT. The range of compressor operation is dependent on the functional and safe limits of surging and choking. The turbine operating speeds are required to be matched with that of compressor for wide range of operating conditions. Due to this constrain, design for optimum possible performance is often sacrificed. Further, once catered for a design point, gas turbines offer low part load efficiencies at conditions away from design point. As a more efficient option, a GT is practically achievable in a split configuration, where the compressor and turbine rotate on different shafts independently. The compressor is driven by a variable speed electric motor. The power developed in the combustor using the compressed air from the compressor and fuel, drives the turbine. The turbine provides mechanical shaft power through a gear box if required. A drive taken from the shaft rotates an electricity generator, which provides power for the compressor’s variable speed electric motor through a power bank. Despite introducing, two additional power conversions compared to a conventional GT, this split configuration named as ‘Part Electric Gas Turbine’, has a potential for new applications and to achieve overall better efficiencies from a GT considering the poor part load characteristics of a conventional GT.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
Nicola Maceli ◽  
...  

In this paper a multi-objective, aerodynamic optimization of a high-pressure steam turbine stage is presented. The overall optimization strategy relies on a neural-network-based approach, aimed at maximizing the stage’s efficiency, while at the same time increasing the stage loading. The stage under investigation is composed of prismatic blades, usually employed in a repeating stage environment and in a wide range of operating conditions. For this reason, two different optimizations are carried out, at high and low flow coefficients. The optimized geometries are chosen taking into account aerodynamic constraints, such as limitation of the pressure recovery in the uncovered part of the suction side, as well as mechanical constraints, such as root tensile stress and dynamic behavior. As a result, an optimum airfoil is selected and its performance are characterized over the whole range of operating conditions. Parallel to the numerical activity, both optimized and original geometries are tested in a linear cascade, and experimental results are available for comparison purposes in terms of loading distributions and loss coefficients. Comparisons between measurements and calculations are presented and discussed for a number of incidence angles and expansion ratios.


Author(s):  
M. Ellis ◽  
C. Kurwitz ◽  
F. Best

In the microgravity environment experienced by space vehicles, liquid and gas do not naturally separate as on Earth. This behavior presents a problem for two-phase space systems, such as environment conditioning, waste water processing, and power systems. Furthermore, with recent renewed interest in space nuclear power systems, a microgravity Rankine cycle is attractive for thermal to electric energy conversion and would require a phase separation device. Responding to this need, researchers have conceived various methods of producing phase separation in low gravity environments. These separator types have included wicking, elbow, hydrophobic/hydrophilic, vortex, rotary fan separators, and combinations thereof. Each class of separator achieved acceptable performance for particular applications and most performed in some capacity for the space program. However, increased integration of multiphase systems requires a separator design adaptable to a variety of system operating conditions. To this end, researchers at Texas A&M University (TAMU) have developed a Microgravity Vortex Separator (MVS) capable of handling both a wide range of inlet conditions as well as changes in these conditions with a single, passive design. Currently, rotary separators are recognized as the most versatile microgravity separation technology. However, compared with passive designs, rotary separators suffer from higher power consumption, more complicated mechanical design, and higher maintenance requirements than passive separators. Furthermore, research completed over the past decade has shown the MVS more resistant to inlet flow variations and versatile in application. Most investigations were conducted as part of system integration experiments including, among others, propellant transfer, waste water processing, and fuel cell systems. Testing involved determination of hydrodynamic conditions relating to vortex stability, inlet quality effects, accumulation volume potential, and dynamic volume monitoring. In most cases, a 1.2 liter separator was found to accommodate system flow conditions. This size produced reliable phase separation for liquid flow rates from 1.8 to 9.8 liters per minute, for gas flow rates of 0.5 to 180 standard liters per minute, over the full range of quality, and with fluid inventory changes up to 0.35 liters. Moreover, an acoustic sensor, integrated into the wall of the separation chamber, allows liquid film thickness monitoring with an accuracy of 0.1 inches. Currently, application of the MVS is being extended to cabin air dehumidification and a Rankine power cycle system. Both of these projects will allow further development of the TAMU separator.


Author(s):  
Jeffrey N. Phillips ◽  
Meherwan P. Boyce ◽  
Jay Grandmont ◽  
Leonard Angello

A spreadsheet-based performance monitoring software program has been developed which uses OEM correction curves and thermodynamic analysis to compare actual simple cycle gas turbine performance to expected performance over the full-range of operation including part-load. The program has been designed to require a minimum of user set-up and can interface with widely-used, third-party data historians to access plant operating data in real-time. In addition to providing overall plant performance indicators, the program also provides component-level indicators such as combustion turbine compressor section efficiency. An overview of the algorithms used to calculate actual and expected performance is provided. The advantages and shortcomings of this approach are compared to those used by others. Results are presented from initial testing of the software on a 500 MW combined cycle power featuring two GE 7FA combustion turbines. Performance results include data on the compressor section efficiency of a 7FA over a wide range of operating conditions.


Author(s):  
F. Neumayer ◽  
G. Kulhanek ◽  
H.-P. Pirker ◽  
H. Jericha ◽  
A. Seyr ◽  
...  

This paper describes the operation of a continuously operating cold flow test stand for axial turbine stages. The interesting feature of this test stand is the fact that the power generated by the test turbine is used for driving a compressor, which supplies additional air to drive the turbine. The brake compressor was a donation from industry and was a very welcome alternative to a water brake. The advantages of using this compressor lie in the low installation costs and the power savings. The performance of the test turbine stage influences the capabilities of the test stand. A suction blower driven by a helicopter engine can be used to decrease the exhaust pressure allowing to increase the turbine expansion ratio. The performance of the whole test facility and the complex interaction of the components will be described. In general, design engineers are interested in the performance of their test stages at different operating conditions (i.e. corrected speed, pressure ratio). It will be shown by which control mechanisms different operation points can be obtained and which range of the values can be achieved.


Author(s):  
Friedrich-K. Benra ◽  
Verena Klapdor ◽  
Michael Schulten

To discuss the impact of the surface roughness on the efficiency of shrouded centrifugal compressor impellers, this paper presents a theoretical examination of different parameters influencing their aerodynamic behavior. The work is based on the available literature about the influence of surface roughness on the aerodynamics of fluids. An algorithm was derived from different theoretical approaches, which allows computation of the prospective efficiency deficit of radial impellers, dependent on the specific technical roughness. With the help of a numerical code, the impact of several parameters on the efficiency of a shrouded radial impeller due to surface roughness was evaluated. Additional to the expected efficiency drop at the design point of the impeller, the computations were extended for a wide range of operating conditions covering partial loading as well as overloading conditions. All results are discussed in comparison to a hydraulically smooth impeller surface. Thus, only additional losses due to surface roughness are focused on.


1974 ◽  
Vol 96 (3) ◽  
pp. 976-982 ◽  
Author(s):  
S. Mohan ◽  
E. J. Hahn

This paper investigates squeeze film bearings supporting a centrally preloaded rigid rotor mounted in antifriction bearings. Assuming the short bearing approximation and isothermal, incompressible lubrication, design data are presented for such a system over a wide range of operating conditions. Design considerations include the possibility of undesirable operation modes, the maximum unbalance for which the squeeze film support is superior to the rigid mount, the transmissibility at design speed and the forces transmitted during start-up. It is shown that unbalance force attenuations by factors of three or more are a practical possibility with a consequent increase in antifriction bearing life. A numerical example is included.


Author(s):  
Robert Pelton ◽  
Tim Allison ◽  
Sewoong Jung ◽  
Natalie Smith

Supercritical carbon dioxide (sCO2) power cycles require high compressor efficiency at both the design-point and over a wide operating range. Increasing the compressor efficiency and range helps maximize the power output of the cycle and allows operation over a broader range of transient and part-load operating conditions. For sCO2 cycles operating with compressor inlets near the critical point, large variations in fluid properties are possible with small changes in temperature or pressure. This leads to particular challenges for air-cooled cycles where compressor inlet temperature and associated fluid density are subject to daily and seasonal variations as well as transient events. Design and off-design operating requirements for a wide-range compressor impeller are presented where the impeller is implemented on an integrally-geared compressor-expander (IGC) concept for a high temperature sCO2 recompression cycle. In order to satisfy the range and efficiency requirements of the cycle, a novel compressor stage design incorporating a semi-open impeller concept with a passive recirculating casing treatment is presented that mitigates inducer stall and extends the low flow operating range. The stage design also incorporates splitter blades and a vaneless diffuser to maximize efficiency and operating range. These advanced impeller design features are enabled through the use of direct metal laser sintering (DMLS) manufacturing. The resulting design increases the range from 45% to 73% relative to a conventional closed impeller design while maintaining high design point efficiency.


Sign in / Sign up

Export Citation Format

Share Document