Effect of Spanwise Hole to Hole Spacing on Overall Cooling Effectiveness of Effusion Cooled Combustor Liners for a Swirl Stabilized Can Combustor

2021 ◽  
Author(s):  
Shoaib Ahmed ◽  
Benjamin H. Wahls ◽  
Srinath Ekkad ◽  
Hanjie Lee ◽  
Yin-Hsiang Ho

Abstract One of the most effective ways to cool the combustor liner is through effusion cooling. Effusion cooling (also known as full coverage effusion cooling) involves uniformly spaced holes distributed throughout the combustor liner wall. Effusion cooling configurations are preferred for their high effectiveness, low-pressure penalty, and ease of manufacturing. In this paper, experimental results are presented for effusion cooling configurations for a realistic swirl driven can combustor under reacting (flame) conditions. The can-combustor was equipped with an industrial engine swirler and gaseous fuel (methane), subjecting the liner walls to engine representative flow and combustion conditions. In this study, three different effusion cooling liners with spanwise spacings of r/d = 6, 8, and 10 and streamwise spacing of z/d = 10 were tested for four coolant-to-main airflow ratios. The experiments were carried out at a constant main flow Reynolds number (based on combustor diameter) of 12,500 at a total equivalence ratio of 0.65. Infrared Thermography (IRT) was used to measure the liner outer surface temperature, and detailed overall effectiveness values were determined under steady-state conditions. The results indicate that decreasing the spanwise hole-to-hole spacing (r/d) from 10 to 8 increased the overall cooling effectiveness by 2–5%. It was found that reducing the spanwise hole-to-hole spacing further to r/d = 6 does not affect the cooling effectiveness implying the existence of an optimum spanwise hole-to-hole spacing. Also, the minimum liner cooling effectiveness on the liner wall was found to be downstream of the impingement location, which is not observed in existing literature for experiments done under non-reacting conditions.

Author(s):  
Yongbin Ji ◽  
Bing Ge ◽  
Shusheng Zang ◽  
Jiangpeng Yu ◽  
Ji Zhang

Gas turbine combustors design nowadays is aimed at achieving extremely lower NOx emissions through involving more air into the combustor to perform lean combustion, which results in the reduction of cooling air ratio for the liner walls. In this context, effusion cooling, one of the most effective cooling strategies, is adopted on the liner for its advantages of providing well cooling protection with limited amount of air. The swirl flow structure generated by the injector to stabilize flame in most modern lean-burn combustor is very complex with recirculation and vortex breakdown. So the interaction between three dimensional main flow and jets issued from the effusion holes is significant when assessing effusion cooling performance on the liner. In the present work, detailed effusion cooling feature on both inner and outer liners of a scaled annular combustor equipped with three axial swirlers has been provided under non-reactive and reactive conditions. The main flow is electrically heated for the non-reactive condition, while premixed combustion is realized after methane is fueled into the injectors and mixed with the air in the surrounding passage for the reactive condition. Temperature distribution on the target bended plate with 7 rows of discrete cooling holes in an in-line layout is captured by infrared thermography, and the cooling effectiveness is then analyzed. Effects of coolant to mainstream flow rate ratio and equivalence ratio are evaluated respectively. Results show that the macro rotational flow generated by the swirl flows interacts with cooling film and leads to non-symmetric cooling protection circumferentially on both liners. Additionally, averaged cooling effectiveness is found to increase with the flow rate ratio. At reactive conditions, stagnation of the high temperature swirl flow impinging on the liner wall locates at X/D range of 0.4–0.5, which has not been observed at non-reactive conditions. Also cooling effectiveness results indicate that outer liner obtains better cooling protection than inner liner when reaction is activated. Finally, the effect of most interested parameter for combustion process equivalence ratio is surveyed at Φ=0.7, 0.8 and 0.9. With experimental results, the importance of the combustion is highlighted in weighing the effusion cooling performance on the real annular combustor liners, which can’t be predicted comprehensively by non-reactive investigations. To obtain more knowledge of this issue, future work concerned with the flow field and flame visualization needs to be done through experimental techniques and numerical methods.


Author(s):  
Shoaib Ahmed ◽  
Kishore Ranganath Ramakrishnan ◽  
Srinath Ekkad ◽  
Prashant Singh ◽  
Federico Liberatore ◽  
...  

Abstract Emphasis on lean premixed combustion in modern low NOx combustion chambers limits the availability of air for cooling the combustion liner. Hence the development of optimized liner cooling designs is imperative for effective usage of available coolant. Effusion cooling (also known as full-coverage film cooling) is a common method to cool the combustor liner, which involves uniformly spaced holes distributed throughout the liner curved surface area. This paper presents findings from an experimental study on the characterization of overall cooling effectiveness of an effusion-cooled liner wall, which was representative of a can combustor under heated flow (non-reacting) and lean-combustion (reacting) conditions. The model can-combustor was equipped with an industrial swirler, which subjected the liner walls to engine representative flow and combustion conditions. Inline and staggered arrangement of effusion holes have been studied. These configurations were tested for five different blowing ratios ranging from 0.7 to 4, under both reacting and non-reacting conditions. The experiments were carried out at a constant Reynolds number (based on combustor diameter) of 12,500. Infrared Thermography (IRT) was used to measure the liner outer surface temperature and detailed overall effectiveness values were determined under steady-state conditions. Under non-reacting conditions, the staggered configuration was found to be 9–25% more effective compared to inline configuration. Under reacting conditions, the staggered configuration was be 4–8% more effective compared to inline configuration. It is clear that the coolant-flame interaction for the reacting cases had a significant impact on the liner cooling effectiveness as compared to the non-reacting cases and results in less variation between inline and staggered configurations.


2013 ◽  
Vol 390 ◽  
pp. 38-42 ◽  
Author(s):  
Yoshifumi Yokoi ◽  
Hiromi Fukuta

In this study, a visualization experiment was performed in order to confirm the flow pattern around airfoil with relative velocity fluctuation by in-line forced oscillating in the direction of flow. An airfoil NACA0012 with attack angle of 5 degrees produce the separation in the steady state was observed by the experiments using dye streak method at Reynolds number Re=3.6x103. The investigation of the attack angle which does not separate in such low Reynolds number was performed, and it was confirmed that the separation occurs to 3 degrees. And the airfoil with attack angle of 2 degrees which does not cause separation in steady state, was forced to oscillate with two kinds of relative velocity ratio (umax/U=0.4 and 0.8, here, umax and U denote maximum moving speed of airfoil and main flow velocity, respectively.). The flow separation on the surface of airfoil with attack angle which does not produce the separation in the steady state is occurred even if the maximum moving speed of airfoil umax is in the range which does not exceed main flow velocity U.


2016 ◽  
Vol 802 ◽  
pp. 174-185 ◽  
Author(s):  
F. Candelier ◽  
B. Mehlig

We compute the hydrodynamic torque on a dumbbell (two spheres linked by a massless rigid rod) settling in a quiescent fluid at small but finite Reynolds number. The spheres have the same mass densities but different sizes. When the sizes are quite different, the dumbbell settles vertically, aligned with the direction of gravity, the largest sphere first. But when the size difference is sufficiently small, then its steady-state angle is determined by a competition between the size difference and the Reynolds number. When the sizes of the spheres are exactly equal, then fluid inertia causes the dumbbell to settle in a horizontal orientation.


1980 ◽  
Vol 102 (1) ◽  
pp. 8-22 ◽  
Author(s):  
A. M. Hecht ◽  
H. Yeh ◽  
S. M. K. Chung

Collapse of arteries subjected to a band of hydrostatic pressure of finite length is analyzed. The vessel is treated as a long, thin, linearly elastic, orthotropic cylindrical shell, homogeneous in composition, and with negligible radial stresses. Blood in the vessel is treated as a Newtonian fluid and the Reynolds number is of order 1. Results are obtained for effects of the following factors on arterial collapse: intraluminal pressure, length of the pressure band, elastic properties of the vessel, initial stress both longitudinally and circumferentially, blood flow Reynolds number, compressibility, and wall thickness to radius ratio. It is found that the predominant parameter influencing vessel collapse for the intermediate range of vessel size and blood flow Reynolds numbers studied is the preconstricted intraluminal pressure. For pressure bands less than about 10 vessel radii the collapse pressure increases sharply with increasing intraluminal pressure. Initial axial prestress is found to be highly stabilizing for small band lengths. The effects of fluid flow are found to be small for pressure bands of less than 100 vessel radii. No dramatic orthotropic vessel behavior is apparent. The analysis shows that any reduction in intraluminal pressure, such as that produced by an upstream obstruction, will significantly lower the required collapse pressure. Medical implications of this analysis to Legg-Perthes disease are discussed.


1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.


Author(s):  
Chiyuki Nakamata ◽  
Yoji Okita ◽  
Takashi Yamane ◽  
Yoshitaka Fukuyama ◽  
Toyoaki Yoshida

Cooling effectiveness of an impingement cooling with array of racetrack-shaped impingement holes is investigated. Two types of specimens are investigated. One is a plain target plate and the other is a plate roughened with bump type elements. Sensitivity of relative location of bump to impingement hole on the cooling effectiveness is also investigated. Experiments are conducted under three different mainflow Reynolds numbers ranging from 2.6×105 to 4.7×105, with four different cooling air Reynolds numbers for each main flow condition. The cooling air Reynolds numbers are in the range from 1.2×103 to 1.3×104.


2016 ◽  
Vol 30 (8) ◽  
pp. 6727-6737 ◽  
Author(s):  
Cong Xu ◽  
Zhihua Wang ◽  
Wubin Weng ◽  
Kaidi Wan ◽  
Ronald Whiddon ◽  
...  

Author(s):  
A. Andreini ◽  
C. Bianchini ◽  
A. Ceccherini ◽  
B. Facchini ◽  
L. Mangani ◽  
...  

A numerical analysis of two different effusion cooled plates, with a feasible arrangement for combustor liner application, is presented in this paper. Though having the same porosity and very shallow injection angle (17°), the first configuration presents a “conventional” circular drilling, while the other has “shaped” holes with such an elliptical cross-section that leads to a circular imprint on the cooled surface. Either geometries were the object of an experimental survey in which both adiabatic and overall effectiveness were measured. In order to compensate for the lack of detailed aerodynamic measurements, 3D CFD computations were performed for the two geometries. Steady state RANS calculations were carried out using a k–ε Two Layer turbulence model, both in the standard isotropic and in an algebraically corrected non isotropic version specifically tuned to better predict the lateral spreading of jets in a cross flow. Flow characteristic reproduce typical effusion cooled combustor liner conditions with blowing ratio of 5 and coolant jet Reynolds number of 12500. Even though good agreement could not be obtained comparing thermal adiabatic effectiveness with experiments, the findings of the experiments regarding the rating of the cooling efficiency of the two configurations were confirmed. Additionally, conjugate simulations were performed for the circular hole geometry in order to quantify heat transfer effects and to directly compare them with raw experimental overall effectiveness data.


Sign in / Sign up

Export Citation Format

Share Document