Reconstruction of Temperature Distribution for a Turbulent Free Jet Using Background Oriented Schlieren

2021 ◽  
Author(s):  
Benjamin H. Wahls ◽  
Kishore Ranganath Ramakrishnan ◽  
Srinath Ekkad

Abstract Background Oriented Schlieren (BOS) has been shown to be an excellent tool for qualitative flow visualization, and more recently, literature has shown that the technique can be expanded to yield quantitative measurements as well. In this study, a BOS setup was built to construct the temperature distribution of a heated turbulent free 12mm diameter jet near the nozzle. A 1080p DSLR camera was used to view a black and white speckled background plane through the heated free jet in question. Comparing images of the background with and without flow present using a cross correlation algorithm gave the apparent displacement of all points on the background viewed through the flow. Once this displacement field was obtained, a ray-tracing algorithm was implemented to reconstruct the refractive index of the center plane of the jet. Then, the Gladstone-Dale and ideal gas relations were combined and used to calculate the temperature of the center plane. Reynolds number, based on the jet diameter, was held constant at 6,000 for all cases, and steady state nozzle temperature was varied from 57°C to 135°C. Reconstructed temperature distributions were validated using K-type thermocouple measurements by allowing the system to reach steady state before acquiring data. Average agreement of 4–6% was observed between thermocouple and BOS measurements for axial locations of at least 30 mm downstream. Due to experimental error, accuracy decreases as axial location moves towards the nozzle, and as nozzle temperature increases. Improvements to the setup are being considered to improve the agreement in low accuracy regions. Further, this technique has the potential to be used to determine the temperatures in open and optically accessible closed reactive flows. Having information about near wall temperature in closed reactive flows will give insight into wall convective heat transfer characterization and will also help benchmark combustion based numerical models in applications such as gas turbines.

1993 ◽  
Vol 115 (4A) ◽  
pp. 380-388 ◽  
Author(s):  
S. T. Clegg ◽  
R. B. Roemer

Subsets of data from spatially sampled temperatures measured in each of nine experimental heatings of normal canine thighs were used to test the feasibility of using a state and parameter estimation (SPE) technique to predict the complete measured data set in each heating. Temperature measurements were made at between seventy-two and ninety-six stationary thermocouple locations within the thigh, and measurements from as few as thirteen of these locations were used as inputs to the estimation algorithm. The remaining (non “input”) measurements were compared to the predicted temperatures for the corresponding “unmeasured” locations to judge the ability of the estimation algorithm to accurately reconstruct the complete experimental data set. The results show that the predictions of the “unmeasured” steady-state temperatures are quite accurate in general (average errors usually < 0.5°C; and small variances about those averages) and that this reconstruction procedure can yield improved descriptors of the steady-state temperature distribution. The accuracy of the reconstructed temperature distribution was not strongly affected by either the number of perfusion zones or by the number of input sensors used by the algorithm. One situation extensively considered in this study modeled the thigh with twenty-seven independent regions of perfusion. For this situation, measurements from ninety-six to thirteen sensors were used as input to the estimation algorithm. The average error for all of these cases ranged from −0.55°C to +0.75°C, respectively, and was not strongly related to the number of sensors used as input to the estimation algorithm. For these same cases the maximum prediction error (the maximum absolute difference between the measured temperature and the predicted temperature determined by a search over all locations) ranged from 0.92°C to 5.08°C, respectively. To attempt to explain the magnitude of the maximum error, several possible sources of model mismatch and of experimental uncertainty were considered. For this study, a significant source of error appears to arise from differences between the true power deposition field, the power deposition model predictions, and the experimentally measured powers. In summary, while large errors can be present for a few isolated locations in the predicted temperature fields, the SPE algorithm can accurately predict the average characteristics of the temperature field. This predictive ability should be clinically useful.


Author(s):  
Martin Henke ◽  
Nikolai Klempp ◽  
Martina Hohloch ◽  
Thomas Monz ◽  
Manfred Aigner

Micro gas turbines (MGT) provide a highly efficient, low-pollutant way to generate power and heat on-site. MGTs have also proven to be a versatile technology platform for recent developments like utilization of fuels with low specific heating values and solar thermal electricity generation. Moreover, they are the foundation to build novel cycles like the inverted Brayton cycle or fuel cell hybrid power plants. Numerical simulations of steady operation points are beneficial in various phases of MGT cycle development. They are used to determine and analyze the future potentials of innovative cycles for example by predicting the electrical efficiency and they support the thermodynamic design process (by providing mass flow, pressure and temperature data). Numerical Simulation allows to approximate off-design performance of known cycles e.g. power output at different ambient conditions. Additionally, numerical simulation is used to support cycle optimization efforts by analyzing the sensitivity of component performance on cycle performance. Numerical models of the MGT components have to be tuned and validated based on experimental data from MGT test rigs. At DLR institute of combustion technology a MGT steady-state cycle simulation tool has been used to analyze a variety of cycles and has been revised for several years. In this paper, the validation process is discussed in detail. Comparing simulation data with measurement data from the DLR Turbec T100 test rig has led to extensions of the numeric models, on the one hand, and to modifications of the test rig on the other. Newly implemented numerical models account for the generator heat release to the inlet air and the power electronic limitations. The test rig was modified to improve the temperature measurement at positions with uneven spatial temperature distribution such as the turbine outlet. Analyzing these temperature distributions also yields a possible explanation for the apparent strong recuperator efficiency drop at high load levels, which was also observed by other T100 users before.


1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


Author(s):  
Cesar Celis ◽  
Érica Xavier ◽  
Tairo Teixeira ◽  
Gustavo R. S. Pinto

This work describes the development and implementation of a signal analysis module which allows the reliable detection of operating regimes in industrial gas turbines. Its use is intended for steady state-based condition monitoring and diagnostics systems. This type of systems requires the determination of the operating regime of the equipment, in this particular case, of the industrial gas turbine. After a brief introduction the context in which the signal analysis module is developed is highlighted. Next the state of the art of the different methodologies used for steady state detection in equipment is summarized. A detailed description of the signal analysis module developed, including its different sub systems and the main hypotheses considered during its development, is shown to follow. Finally the main results obtained through the use of the module developed are presented and discussed. The results obtained emphasize the adequacy of this type of procedures for the determination of operating regimes in industrial gas turbines.


Author(s):  
Illias Hischier ◽  
Pascal Leumann ◽  
Aldo Steinfeld

A high-temperature pressurized air-based receiver for power generation via solar-driven gas turbines is experimentally and theoretically examined. It consists of an annular reticulate porous ceramic (RPC) foam concentric with an inner cylindrical cavity-receiver exposed to concentrated solar radiation. Absorbed heat is transferred by combined conduction, radiation, and convection to the pressurized air flowing across the RPC. The governing steady-state mass, momentum and energy conservation equations are formulated and solved numerically by coupled Finite Volume and Monte Carlo techniques. Validation is accomplished with experimental results using a 1 kW solar receiver prototype subjected to average solar radiative fluxes in the range 1870–4360 kW m−2. Experimentation was carried out with air and helium as working fluids, heated from ambient temperature up to 1335 K at an absolute operating pressure of 5 bars.


Sign in / Sign up

Export Citation Format

Share Document