Vaneless Diffuser Performance in a Super-Critical Carbon Dioxide Centrifugal Compressor With Real Gas Effects

2021 ◽  
Author(s):  
Lakshminarayanan Seshadri ◽  
Pramod Kumar

Abstract Super-critical Carbon dioxide (s-CO2) flows are neither incompressible nor ideal gas flows. Unlike perfect gases, the enthalpy of s-CO2 near the critical point is a strong function of pressure. Incorporation of these effects is necessary for accurate modeling of flows in centrifugal compressor vaneless diffusers. This study reviews the existing vaneless diffuser modeling technique, and modifications are made to incorporate real gas effects. Like the existing procedure, the proposed formulation does not require multiple iterations for convergence. The results are obtained in a single step using a marching technique. Hence, this model can be incorporated in standard centrifugal compressor design and analysis tools, especially for super-critical carbon dioxide flows, subject to experimental validation.

Author(s):  
Jalil Ouazzani ◽  
Yves Garrabos

A new numerical algorithm has been developed to compute low Mach number fluids using the cV-formulation of the energy equation. cV is the specific heat at constant volume. It has been applied to both supercritical fluid flows (using a nonlinear equation of state like the van der Waals cubic equation of state) and gas flows (using an ideal gas law). The algorithm is introduced successfully in a finite volume code using the SIMPLE and SIMPLER methods. Its main advantage lies in the decoupling of the energy equation and equation of state from the momentum and continuity equations, leading to decrease significantly the CPU time in the case of supercritical fluids simulations. Moreover it allows for supercritical fluid flow simulations the use of other discretization methods (such as spectral methods and/or finite differences) and any other nonlinear form of the equation of state. The new algorithm is presented after a brief description of the previously existing algorithm to solve supercritical fluid flows. Then three published Benchmark problems for steady and unsteady ideal gas flows are treated, as well as the side heated cavity problem for a near critical carbon dioxide filling. The results are then compared to those obtained from the previous algorithm as well as to those obtained from a spectral code using the new algorithm. This comparative investigation is extended to the Rayleigh-Bénard problem for a near critical carbon dioxide filled square cavity with the use of the Van der Waals and the Peng-Robinson equations of state.


2010 ◽  
Vol 2010 (0) ◽  
pp. 189-190
Author(s):  
Takehiro Himeno ◽  
Takayuki Tan ◽  
Toshinori Watanabe ◽  
Chihiro Inoue ◽  
Motoaki Utamura ◽  
...  

Author(s):  
Hengjie Xu ◽  
Pengyun Song ◽  
Wenyuan Mao ◽  
Qiangguo Deng

By taking carbon dioxide and hydrogen as lubricating gas, respectively, this paper presents an analysis on the pressure characteristics and temperature distribution of spiral groove dry gas seal which influenced by real gas effect under choked flow condition. Numerical results show that the deviation between real gas and ideal gas, which expressed by the deviation degree between compressibility factor Z and 1, is the main reason for real gas effect affecting sealing performance. Compared with ideal gas model, real gas effect raises exit pressure, opening force, leakage rate, Mach number in dam region, and temperature for carbon dioxide ( Z < 1), while it decreases those characteristics for hydrogen ( Z > 1) under the same operating conditions. In addition, choked flow effect increases opening force and reduces leakage rate and temperature-drop between entrance and exit of sealing clearance. Meanwhile, it may cause an unstable behavior for the seal.


Author(s):  
G. Angelino

The potential performance of carbon dioxide as working fluid is recognized to be similar to that of steam, which justifies thorough thermodynamic analysis of possible cycles. The substantially better results achievable with CO2 with respect to other gases are due to the real gas behaviour in the vicinity of the Andrews curve. Simple cycles benefit from the reduced compression work, but their efficiency is compromised by significant losses caused by irreversible heat transfer. Their economy, however, is appreciably better than that of perfect gas cycles. More complex cycle arrangements, six of which are proposed and analyzed in detail, reduce heat transfer losses while maintaining the advantage of low compression work and raise cycle efficiency to values attained only by the best steam practice. Some of the cycles presented were conceived to give a good efficiency at moderate pressure which is of particular value in direct-cycle nuclear applications. The favourable influence on heat transfer coefficients of the combined variation with pressure of mechanical, thermal and transport properties, due to real gas effects, is illustrated. Technical aspects as turbo-machines dimensions and heat transfer surfaces needed for regeneration are also considered. Cooling water requirements are found to be not much more stringent than in steam stations.


1994 ◽  
Vol 269 ◽  
pp. 283-299 ◽  
Author(s):  
Wayland C. Griffith ◽  
William J. Yanta ◽  
William C. Ragsdale

Recent experimental observation of supercooling in large hypersonic wind tunnels using pure nitrogen identified a broad range of non-equilibrium metastable vapour states of the flow in the test cell. To investigate this phenomenon a number of real-gas effects are analysed and compared with predictions made using the ideal-gas equation of state and equilibrium thermodynamics. The observed limit on the extent of supercooling is found to be at 60% of the temperature difference from the sublimation line to Gibbs’ absolute limit on phase stability. The mass fraction then condensing is calculated to be 12–14%. Included in the study are virial effects, quantization of rotational and vibrational energy, and the possible role of vibrational relaxation and freezing in supercooling. Results suggest that use of the supercooled region to enlarge the Mach–Reynolds number test envelope may be practical. Data from model tests in supercooled flows support this possibility.


Author(s):  
Andrew P. S. Wheeler ◽  
Jonathan Ong

In this paper we investigate the three-dimensional unsteady real-gas flows which occur within Organic Rankine Cycle (ORC) turbines. A radial-inflow turbine stage operating with supersonic vane exit flows (M ≈ 1.4) is simulated using a RANS solver which includes real-gas effects. Steady CFD simulations show that small changes in the inducer shape can have a significant effect on turbine efficiency due to the development of supersonic flows in the rotor. Unsteady predictions show the same trends as the steady CFD, however a strong interaction between the vane trailing-edge shocks and rotor leading-edge leads to a significant drop in efficiency.


2018 ◽  
Vol 843 ◽  
pp. 244-292 ◽  
Author(s):  
William A. Sirignano

Compressible flow varies from ideal-gas behaviour at high pressures where molecular interactions become important. It is widely accepted that density is well described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, $A$ and $B$, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behaviour, a closed-form approximate solution is obtained that is valid over a wide range of conditions. An expansion in these molecular interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behaviour. Real-gas modifications in density, enthalpy and sound speed for a given pressure and temperature lead to variations in many basic compressible-flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear wave propagation and flow across a shock wave, all for a real gas. Modifications are obtained for allowable mass flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl’s shock relation and the Rankine–Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and can be applied to multicomponent flows or to more complex flow configurations.


Author(s):  
Jiangnan Zhang ◽  
Pedro Gomes ◽  
Mehrdad Zangeneh ◽  
Benjamin Choo

It is found that the ideal gas assumption is not proper for the design of turbomachinery blades using supercritical CO2 (S-CO2) as working fluid especially near the critical point. Therefore, the inverse design method which has been successfully applied to the ideal gas is extended to applications for the real gas by using a real gas property lookup table. A fast interpolation lookup approach is implemented which can be applied both in superheated and two-phase regimes. This method is applied to the design of a centrifugal compressor blade and a radial-inflow turbine blade for a S-CO2 recompression Brayton cycle. The stage aerodynamic performance (volute included) of the compressor and turbine is validated numerically by using the commercial CFD code ANSYS CFX R162. The structural integrity of the designs is also confirmed by using ANSYS Workbench Mechanical R162.


Author(s):  
Jin Tang ◽  
Teemu Turunen-Saaresti ◽  
Arttu Reunanen ◽  
Juha Honkatukia ◽  
Jaakko Larjola

Numerical analysis is conducted for the 3-dimensional impeller and vaneless diffuser of a small centrifugal compressor. The influence of impeller tip clearance is investigated. A Navier-Stokes flow solver Finflo has been applied for the simulation. A practical real gas model has been generated for the calculation. Simulations with different sizes of tip clearance at different mass flow rates have been made. The results are compared to experimental results at a certain tip clearance and one operating point. Reasonable agreement has been obtained. The ideal gas model has also been applied to compare with the real gas model. The numerical results show that tip clearance has a significant effect on the performance of a small centrifugal compressor. As the size of tip clearance increases, both the pressure ratio and the efficiency decrease. The decreasing rate of efficiency is higher at higher mass flow rates and lower at lower mass flow rates. The input power of the compressor hardly changes with different sizes of tip clearance, but increases as the mass flow rate increases. The incidence of impeller and flow angle at the exit of the impeller increase as the size of tip clearance increases. Correlations of the size of tip clearance with the efficiency drop and change of flow angle at the exit of impeller are given. The detailed flow distribution shows that as the size of tip clearance increases, the tangential leaking flow at the tip clearance makes the low velocity flow region grow larger and move from the suction-shroud corner to the center of the flow channel. The main flow at the pressure side is compressed and accelerated. Therefore the uniformity of the flow in the whole channel decreases. The detailed flow distribution also shows that the leaking flow is stronger at higher mass flow rates.


Sign in / Sign up

Export Citation Format

Share Document