Development of a New Loss Model for Turbomachinery Labyrinth Seals

2021 ◽  
Author(s):  
Davendu Y. Kulkarni ◽  
Luca di Mare

Abstract The preliminary design of labyrinth seals requires a fast and accurate estimate of the leakage flow. While the conventional bulk flow models can quickly predict labyrinth seal discharge characteristics, they lack the accuracy and pragmatism of modern CFD technique and vice-a-versa. This paper presents a new 1D loss model for straight-through gas labyrinth seals that can provide quick seal leakage flow predictions with CFD-equivalent accuracy. The present seal loss model is developed using numerical experimentation technique. Multiple CFD computations are conducted on straight-through labyrinth seal geometries for a range of pressure ratios. A distinct post-processing methodology is developed to extract the through-flow stream tube in seal. Total pressure losses and flow area variations experienced by the flow in seal stream-tube are systematically accounted for based on the well-known knife-to-knife (K2K) methodology. Regression analyses are conducted on the trends of variations of loss and area coefficients to derive the independent pressure loss and flow area correlations. These novel correlations can predict the bulk leakage flow rate, windage flow rate and inter-knife static pressures over a wide range of variation of flow and geometry parameters. Validation study shows that the leakage mass flow rate predicted by this model is accurate within ±8% of measured test data. This fast and accurate model can be employed for various applications such as, in seal design-analysis workflows, for secondary air system (SAS) performance analysis and for the rotor-dynamic and aeroelastic assessments of seals.

Author(s):  
W. F. McGreehan ◽  
S. H. Ko

The surface frictional characteristics of a labyrinth seal can result in significant windage power dissipation for high speed seals. Recent advances in seal design have produced high speed, high pressure labyrinth seals which operate at very low leakage rates. The reduced leakage is beneficial to gas turbine efficiency, but seal discharge temperatures can approach material design limits with high windage power dissipation. Also, a high air temperature rise can influence seal leakage flow. Consequently, the general assumption of negligible rotational effect on leakage is not always valid. A method is presented for the prediction of seal power dissipation and leakage flow over a wide range of design parameters. Results are compared to available test data and several approaches examined for the reduction of seal windage.


Author(s):  
Sivakumar Subramanian ◽  
A. S. Sekhar ◽  
B. V. S. S. S. Prasad

A computational methodology is proposed to predict the running clearance of a six-tooth straight-through rotating labyrinth seal numerically by taking into account both the centrifugal and thermal growths. Four different angular velocities ranging from 0 to 3000 rad/s are chosen to study the influence of rotation on the leakage flow rate. The detailed leakage flow fields and the structural deformations are presented. Further, different pressure ratios in the range of 1.1 to 2.5 have been investigated for a wide range of initial clearances. The methodology is validated against the available data in the literature. It is found out that there is a significant reduction in leakage flow rate by incorporating the radial growth for a particular operating condition. However, for a given initial clearance, the rotation has negligible effect on the reduction in the leakage flow rate, except at pressure ratios lower than 1.7. Further; the rotation has more prominent effect for smaller clearance values.


Author(s):  
Jun Li ◽  
Xin Yan ◽  
Zhenping Feng

Labyrinth seals represent an important flow element in the sealing equipment of modern turbomachinery industries. The straight-through and stepped labyrinth seal are widely used in modern steam turbine due to their comparable simple structure and low manufactured costs. The influence of pressure ratio and fin pitch on the leakage flow characteristics of the straight-through and stepped labyrinth seals is numerically determined. The pressure ratio is defined as the outlet static pressure divided by the inlet total pressure. The fin pitch varied in the fixed axial distance of the labyrinth seal. The geometries investigated represent designs of the straight-through and stepped labyrinth seal typical for modern steam turbines. The leakage flow fields in the high rotating straight-through and stepped labyrinth seals are obtained by the Reynolds-Averaged Navier-Stokes solution using the commercial software FLUENT with the fixed seal clearance and fins geometrical structure. The effect of the rotational axis is also taken into account in numerical computations. Numerical simulations covered a range of pressure ratio and fin pitch for the straight-through and stepped labyrinth seals. Dimensionless discharge coefficients, describing the sealing performance, are calculated from the simulation results. The numerical results show that pressure ratio and fin pitch both affects the sealing performance with the fixed seal clearance and fin geometrical structure. The leakage flow rate decreases with the decreasing fin pitch for both the straight-through and stepped labyrinth seal at the fixed pressure ratio. Furthermore, the leakage flow rate decreases with the increasing pressure ratio at the fixed fin pitch for two kinds of labyrinth seals in the present study. This research provides technical support for improved design of labyrinth seals in turbomachinery.


1959 ◽  
Vol 81 (3) ◽  
pp. 332-336 ◽  
Author(s):  
W. Zabriskie ◽  
B. Sternlicht

The leakage flow through labyrinth seals in turbomachinery has been the subject of increasing concern as refinements and advances in design are made. Accurate knowledge of seal leakage is necessary in at least three areas of design: (a) Estimating the effect of seal leakage on performance; (b) regulating the leakage flow required for cooling purposes; (c) determining the thrust-bearing load which is a function of the pressure drop through the seal. This paper is concerned primarily with the fluid-flow aspect of gas leakage through labyrinth seals of the types commonly used in gas and steam turbines. This includes staggered and unstaggered seals of the axial type, which are most commonly used in turbomachinery. The attention to fluid-flow considerations does not imply that material compatibility and operating problems of expansion, deformation, and rub-in are unimportant. In fact, these mechanical considerations may overrule the fluid-flow considerations. For the foregoing reasons, it is desirable to be able to predict seal leakage flows, and thus this aspect of seal design has been singled out for consideration here.


2000 ◽  
Author(s):  
Yumin Xiao ◽  
R. S. Amano

Abstract In this paper a high efficiency labyrinth seal and the staggered labyrinth seal for shrouded blades was presented. The flows in the seal with single, double, and triple tip seals were simulated by solving the two-dimensional Reynolds-averaged Navier-Stokes equations (RANS) and a compressible k-ε turbulence model. A multi-zone technique was used to generate the grids in the complex flow channel. The calculation results showed that the presently proposed staggered labyrinth seal is more efficient than the typical one and the leakage flow rate is dominated by the minimum flow area and the pressure difference. Comparing the performance with the typical labyrinth seal, the present staggered labyrinth seal model can average the total pressure drop among the seals, while the typical one induces a sharp drop across the first tooth. It showed that the leakage flow rate varies as a function of the number of seals to the power of −0.45. For the cases of multiple-seals the space between two seals has little effect on the total mass flow rate. Finally, decreasing the wall temperature will result in an increase of leakage flow.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Lingzi Wang ◽  
Jianmei Feng ◽  
Mingfeng Wang ◽  
Zenghui Ma ◽  
Xueyuan Peng

In the reciprocating labyrinth piston compressor, the characteristic of the internal leakage is crucial for the leakage management and performance improvement of the compressor. However, most of the published studies investigated the rotor-stator system, and those who study the reciprocating piston-cylinder system basically focus on the effects of the geometrical parameters. These conclusions could not directly be applied to predict the real-time leakage flow rate through the labyrinth seal because of the fast reciprocating motion of the piston, which will cause continually pressure change in two compression chambers, and then the pressure fluctuation will affect the flow through the labyrinth seal. A transient simulation model employing the multiscale dynamic mesh, which considers the effect of the reciprocating motion of the piston in the cylinder, is established to identify the characteristics of the internal leakage. This model was verified by a specially designed compressor, and the influence of various parameters was analyzed in detail. The sealing performance decreased linearly with the increase in the pressure ratio, and higher pressure inlet leads to higher leakage flow under the same pressure ratio. The labyrinth seal performance positively correlated to the increase of the rotational speed. Leakage characteristics of five working mediums were carried out, and the results indicated that the relative leakage decreased with an increase in the relative molecular mass. From this study, the realistic internal leakage flow rate under different operating parameters in the reciprocating labyrinth piston compressor could be predicated.


Author(s):  
Donghui Zhang ◽  
Chester Lee ◽  
Michael Cave

Labyrinth seals are widely used in gas compressors to reduce internal leakage and increase the compressor efficiency. Due to the eccentricity between the rotating impeller and the stationary part as *well as the shaft whirling motion, forces are generated when the leakage flow passing through the cavities and the seals. For a lot of applications with high speed and pressure, these forces can drive the system unstable. Thus, predicting the forces accurately become a very important for compressor rotordynamic designs. A lot of research and studies has been done to the seals itself, including bulk flow method, computational fluid dynamic (CFD) and test measurement. The seal and leakage flow interaction forces can be predicted relatively accurate. But very few research treat the seal and cavities as one component interacting with the leakage flow and produce the forces. This paper presents results of CFD investigations on the dynamic coefficients of one typical impeller eye seal and front cavity. The CFD results show that large forces are generated in the front cavity due to circumferential uniform pressure distribution, which caused by the downstream labyrinth seal. The forces generated in the front cavity are more than in the front seal. It was found that the inertia, damping, and stiffness are proportional to average pressure. The cross-coupling stiffness increases with speed with power of 2 while the direct stiffness increases with speed with power of about 1.7.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Yuanqiao Zhang ◽  
Jun Li ◽  
Zhigang Li ◽  
Xin Yan

Abstract Cavity separation baffles can decrease the circumferential swirl intensity of labyrinth seals and increase the seals' rotordynamic characteristics. Compared with conventional baffles, the bristle packs of brush seal baffles can contact the rotor directly, thereby further reducing the swirl intensity of the seal cavity. This paper, using the numerical model combining a multifrequency elliptical whirling orbit model, a porous medium model, and transient Reynolds-averaged Navier–Stokes (RANS) solutions, compares the leakage flow and rotordynamic characteristics of a labyrinth seal with brush-seal baffles (LSBSB) and a labyrinth seal with conventional baffles (LSCB). Ideal air flows into the seal at an inlet preswirl velocity of 0 m/s (or 60 m/s or 100 m/s), total pressure of 690 kPa, and temperature of 14 °C. The outlet static pressure is 100 kPa and the rotational speed is 7500 r/min (surface speed of 66.8 m/s) or 15,000 r/min (surface speed of 133.5 m/s). Numerical results show that the LSBSB possesses the slightly less leakage flow rate than the LSCB due to the flow resistance of the bristle pack to the fluid. Compared with the LSCB, the LSBSB shows a higher positive effective stiffness (Keff) at all considered vibration frequencies and a higher effective damping (Ceff) for most vibration frequencies. What is more, the crossover frequency (fc0) of the LSBSB is significantly lower than that of the LSCB, which means that the LSBSB has a wider frequency range offering positive effective damping. The increasing inlet preswirl velocity and rotational speed only slightly affect the Keff for both seals. The Ceff of two seals decreases as the inlet preswirl velocity rises, especially for the LSCB. The Ceff of the LSCB slightly decreases because of the increasing rotational speed. In contrast, the Ceff of the LSBSB is not sensitive to the changes in rotational speed. In a word, the LSBSB possesses superior rotordynamic performance to the LSCB. Note that this work also investigates the leakage flow and rotordynamic characteristics a labyrinth seal with inclined baffles (LSIB) under the condition of u0 = 60 m/s and n = 15,000 r/min. The inclined baffles of the LSIB are same as the backing plates of LSBSB baffles. The LSIB has rotordynamic coefficients almost equal to the LSCB. Hence, the reason why the LSBSB possesses better rotordynamic performance than that of the LSCB is the flow resistance of bristle packs of brush seal baffles, not the inclination direction variation of baffles.


Author(s):  
Xin Yan ◽  
Xinbo Dai

Abstract Labyrinth seals are widely applied in turbo machines because of their geometrical simplicity, convenient installation, reliable operation and excellent sealing performance. However, in realistic operation process, they usually encounter transient conditions (starting-up, shutting down, etc.) and unavoidable vibrations, which may cause wear in the labyrinth fins. After rubbing, the sealing performance of labyrinth seal will be varied in contrast to the original design. Correspondingly, the aerodynamic efficiency of the turbine stage will be affected by the variation of leakage flow in rubbing process. However, in published literature with respect to the labyrinth seal wear, most of the attention has been paid on revealing sealing performance degradation of labyrinth seal itself. Few studies have been concentrated on the influence of labyrinth seal wear on aerodynamic performance of turbine stages. In such background, the present paper utilizes the numerical methods to investigate the effects of labyrinth seal bending damages on aerodynamic performance of turbine stages. Firstly, under several assumptions, the bending geometrical model was established to describe different degrees of bending damages. Secondly, using three-dimensional RANS simulations, the effects of effective clearance variation due to bending on leakage flow and flow fields in turbine stages were investigated. The overall performance of the turbine stages with teeth-bending damages was also compared with the original design case. The influence of the forward bending and backward bending of labyrinth seals were analyzed and compared with each other. The total-total isentropic efficiency of turbine stages, leakage rates, outlet flow angles, reaction degrees and profile static pressure distributions, entropic distributions and flow fields in seals were obtained and compared to the original design case. The results indicate that the leakage rates in the worn labyrinth seal are quite relevant to the effective clearance, especially for the backward bending damages. As the effective clearances in backward bending cases are increased by 0.2–0.6mm, the isentropic efficiency of turbine stages is decreased by about 1–2%. However, for the forward bending damages, the aerodynamic performance and leakage rates in turbine stages are not sensitive to the effective clearance.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Zhenping Feng

Effects of partition wall type, partition wall number and cavity depth on the leakage and rotordynamic characteristics of the pocket damper seal (PDS) were numerically investigated using a presented 3D transient computational fluid dynamics (CFD) method based on the multifrequency elliptical whirling orbit model. The accuracy and availability of this transient CFD method and the multifrequency elliptical whirling orbit model were demonstrated with the experimental data of the experimental eight-bladed fully partitioned pocket damper seal (FPDS). The leakage flow rates and frequency-dependent rotordynamic coefficients of PDS were computed for two types of partition wall (namely conventional PDS and fully partitioned PDS), four partition wall numbers including the labyrinth seal (no partition wall) and six cavity depths including the plain smooth seal (zero cavity depth) at operational conditions with or without inlet preswirl and 15,000 rpm rotational speed. The numerical results show that the FPDS has the similar leakage performance and more superior stability capacity than the conventional PDS. The FPDS possesses slightly larger leakage flow rate (∼2.6–4.0% larger) compared to the labyrinth seal. Eight is a preferable value for the partition wall number to gain the best leakage performance of the FPDS with the least manufacturing cost. The FPDS possesses significantly larger stiffness and damping than the labyrinth seal. Increasing partition wall number results in a significant increase in the direct stiffness but limited desirable effect on the effective damping. The FPDS possesses the lowest leakage flow rate when the cavity depth is about 2.0 mm. Compared to the plain smooth seal, the FPDS possesses larger positive direct stiffness and significantly less direct damping and effective damping. Increasing cavity depth results in a significant decrease in the stabilizing direct damping and the magnitude of the destabilizing cross-coupling stiffness. H= 3.175 mm is a preferable value of the cavity depth for which the effective damping of the FPDS is largest, especially for the concerned frequencies (80–120 Hz) where most multistage high-pressure centrifugal compressors have stability problem.


Sign in / Sign up

Export Citation Format

Share Document