Computational Studies of Turbulent Flow in an Isothermal Suddenly Enlarged Combustion Chamber

Author(s):  
D. P. Mishra ◽  
T. Vishak

The present work is concerned with computational studies of turbulent flow under isothermal condition in a suddenly enlarged combustion chamber using time averaged Navier-Stokes equations with an eddy-viscosity turbulence closure model. Results were compared well with that of experimental data available in open literature. The effect of inlet turbulence intensity is found to be the dominant parameter determining the flow field. However this effect is found to be decreasing with the increase in the expansion ratio. The increase of turbulence level decreases the reattachment length due to the energy supply to the separating shear layer, which is a major factor determining the reattachment length. It has been found out that for same expansion ratio, the reattachment length attains a minimum value for low turbulence Reynolds number, increases with increase in Reynolds number, and attains a maximum limit. Both the turbulent kinetic energy and the turbulent dissipation rate are found to be maximum in the shear layer and also keep increasing with the increase in turbulence intensity.

1997 ◽  
Vol 330 ◽  
pp. 349-374 ◽  
Author(s):  
HUNG LE ◽  
PARVIZ MOIN ◽  
JOHN KIM

Turbulent flow over a backward-facing step is studied by direct numerical solution of the Navier–Stokes equations. The simulation was conducted at a Reynolds number of 5100 based on the step height h and inlet free-stream velocity, and an expansion ratio of 1.20. Temporal behaviour of spanwise-averaged pressure fluctuation contours and reattachment length show evidence of an approximate periodic behaviour of the free shear layer with a Strouhal number of 0.06. The instantaneous velocity fields indicate that the reattachment location varies in the spanwise direction, and oscillates about a mean value of 6.28h. Statistical results show excellent agreement with experimental data by Jovic & Driver (1994). Of interest are two observations not previously reported for the backward-facing step flow: (a) at the relatively low Reynolds number considered, large negative skin friction is seen in the recirculation region; the peak |Cf| is about 2.5 times the value measured in experiments at high Reynolds numbers; (b) the velocity profiles in the recovery region fall below the universal log-law. The deviation of the velocity profile from the log-law indicates that the turbulent boundary layer is not fully recovered at 20 step heights behind the separation.The budgets of all Reynolds stress components have been computed. The turbulent kinetic energy budget in the recirculation region is similar to that of a turbulent mixing layer. The turbulent transport term makes a significant contribution to the budget and the peak dissipation is about 60% of the peak production. The velocity–pressure gradient correlation and viscous diffusion are negligible in the shear layer, but both are significant in the near-wall region. This trend is seen throughout the recirculation and reattachment region. In the recovery region, the budgets show that effects of the free shear layer are still present.


1997 ◽  
Vol 119 (4) ◽  
pp. 810-817 ◽  
Author(s):  
C. Gau ◽  
W. Y. Sheu ◽  
C. H. Shen

Experiments are performed to study (a) slot air jet impingement cooling flow and (b) the heat transfer under acoustic excitations. Both flow visualization and spectral energy evolution measurements along the shear layer are made. The acoustic excitation at either inherent or noninherent frequencies can make the upstream shift for both the most unstable waves and the resulting vortex formation and its subsequent pairing processes. At inherent frequencies the most unstable wave can be amplified, which increases the turbulence intensity in both the shear layer and the core and enhances the heat transfer. Both the turbulence intensity and the heat transfer increase with increasing excitation pressure levels Spl until partial breakdown of the vortex occurs. At noninherent frequencies, however, the most unstable wave can be suppressed, which reduces the turbulence intensity and decreases the heat transfer. Both the turbulence intensity and the heat transfer decreases with increasing Spl, but increases with increasing Spl when the excitation frequency becomes dominant. For excitation at high Reynolds number with either inherent or noninherent frequency, a greater excitation pressure level is needed to cause the enhancement or the reduction in heat transfer. During the experiments, the inherent frequencies selected for excitation are Fo/2 and Fo/4, the noninherent frequencies are 0.71 Fo, 0.75 Fo, and 0.8 Fo, the acoustic pressure level varies from 70 dB to 100 dB, and the Reynolds number varies from 5500 to 22,000.


Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2019 ◽  
Vol 9 (17) ◽  
pp. 3595 ◽  
Author(s):  
Jianfeng Yao ◽  
Wenjuan Lou ◽  
Guohui Shen ◽  
Yong Guo ◽  
Yuelong Xing

To study the influence of turbulence on the wind pressure and aerodynamic behavior of smooth circular cylinders, wind tunnel tests of a circular cylinder based on wind pressure testing were conducted for different wind speeds and turbulent flows. The tests obtained the characteristic parameters of mean wind pressure coefficient distribution, drag coefficient, lift coefficient and correlation of wind pressure for different turbulence intensities and of Reynolds numbers. These results were also compared with those obtained by previous researchers. The results show that the minimum drag coefficient in the turbulent flow is basically constant at approximate 0.4 and is not affected by the turbulence intensity. When the Reynolds number is in the critical regime, the lift coefficient increased sharply to 0.76 in the smooth flow, indicating that flow separation has an asymmetry; however, the asymmetry does not appear in the turbulent flow. Drag coefficient decreases sharply at a lower critical Reynolds number in the turbulent flow than in the smooth flow. In the smooth flow, the separation point is about 80° in the subcritical regime; it suddenly moves backwards in the critical regime and remains almost unchanged at about 140° in the supercritical regime. However, the angular position of the separation point will always be about 140° for turbulent flow for the Reynolds number in these three regimes. Turbulence intensity and Reynolds number have a significant effect on the correlation of wind pressures around the circular cylinder. Turbulence will weaken the positive correlation of the same side and also reduce the negative correlation between the two sides of the circular cylinder.


1993 ◽  
Vol 256 ◽  
pp. 163-197 ◽  
Author(s):  
Reidar Kristoffersen ◽  
Helge I. Andersson

Direct numerical simulations of fully developed pressure-driven turbulent flow in a rotating channel have been performed. The unsteady Navier–Stokes equations were written for flow in a constantly rotating frame of reference and solved numerically by means of a finite-difference technique on a 128 × 128 × 128 computational mesh. The Reynolds number, based on the bulk mean velocity Um and the channel half-width h, was about 2900, while the rotation number Ro = 2|Ω|h/Um varied from 0 to 0.5. Without system rotation, results of the simulation were in good agreement with the accurate reference simulation of Kim, Moin & Moser (1987) and available experimental data. The simulated flow fields subject to rotation revealed fascinating effects exerted by the Coriolis force on channel flow turbulence. With weak rotation (Ro = 0.01) the turbulence statistics across the channel varied only slightly compared with the nonrotating case, and opposite effects were observed near the pressure and suction sides of the channel. With increasing rotation the augmentation and damping of the turbulence along the pressure and suction sides, respectively, became more significant, resulting in highly asymmetric profiles of mean velocity and turbulent Reynolds stresses. In accordance with the experimental observations of Johnston, Halleen & Lezius (1972), the mean velocity profile exhibited an appreciable region with slope 2Ω. At Ro = 0.50 the Reynolds stresses vanished in the vicinity of the stabilized side, and the nearly complete suppression of the turbulent agitation was confirmed by marker particle trackings and two-point velocity correlations. Rotational-induced Taylor-Görtler-like counter-rotating streamwise vortices have been identified, and the simulations suggest that the vortices are shifted slightly towards the pressure side with increasing rotation rates, and the number of vortex pairs therefore tend to increase with Ro.


1990 ◽  
Vol 112 (3) ◽  
pp. 302-310 ◽  
Author(s):  
T.-M. Liou ◽  
Y. Chang ◽  
D.-W. Hwang

Measurements and computations are presented of mean velocity and turbulence intensity for an arrangement of two pairs of turbulence promoters mounted in tandem in developing channel flow. The Reynolds number (ReD) and the pitch ratio (PR) were varied in the range of 1.2 × 104 to 1.2 × 105 and 1 to 100, respectively. The three pitch ratios 5, 10, 15 were found to provide three characteristic flows which are a useful test of the computational models. The effects of PR on the reattachment lengths and the pressure loss as well as the influence of ReD on the reattachment length were documented in detail. It was found that PR=10 was preferable to PR = 5 and PR = 15 from the standpoint of heat transfer enhancement.


Author(s):  
D. Tyler Landfried ◽  
A. Jana ◽  
M. L. Kimber

Confined laminar fluid jets have many practical applications in industry. Several examples include expansions in pipes and flow of gas into a large plenum. While much consideration has been given experimentally to heat transfer and pressure gradients within the confinement, little attention has been paid to quantify the velocity profiles and transitions between various flow behaviours. Using a finite volume CFD code, OpenFOAM ®, the Navier-Stokes equations were solved for varying expansion ratio, 1/ε = renclosure/rj, and varying Reynolds numbers. In the present analysis, Reynolds number based on the inlet jet diameter is varied from 30 to 70, well within the accepted range for laminar jet behavior. The expansion ratio, 1/ε is varied from 20–200. Of primary focus in the current study are compact correlations for the jet centreline velocity as a function of jet Reynolds number, Rej and expansion ratio. Similar functional dependences for the “linear” decay region of the jet, and the location of the stagnation point on the enclosure wall, are also investigated. These are all important features of the global flow field for the confined jet. Results suggest that initially, the flow characteristics are identical to a free jet. At some downstream location, the presence of the enclosure is felt by the jet and deviations begin to be seen from free jet behavior. This transition region continues until at a sufficiently large downstream location, the flow becomes fully developed, internal Poiseuille flow. In this paper, we analyse these transition regions and offer explanations and practical correlations to successfully predict the important flow physics that occur between free jet behavior and Poiseuille flow. Key dimensionless parameters are identified, the magnitude of which can be used to classify the flow conditions.


Author(s):  
Saja Al-rifai ◽  
Cheng-Xian Lin

Abstract In this study, a numerical analysis of turbulent flow heat and mass transfer in the cross-flow transport membrane condenser (TMC) based heat exchange was carried out. The heat exchanger under investigation was designed to recover both sensible and latent heat due to transport of heat and mass through a nanoporous ceramic membrane in the bundle of tubes of the heat exchanger. The shear stress transport SST k-ω turbulence model was used to model the turbulent flow of the flue gas mixture. The condensation rate of the water vapor from the flue gas were calculated using a mixed condensation model. The mixed model was based on the capillary condensation and wall condensation in the membrane tube. The numerical study was focused on the investigation of the impact of the turbulence intensity of the flue gas at various inlet conditions, such as Reynolds numbers and temperatures, on the heat and mass transfer and pressure drop characteristics. The numerical results were validated against the experimental results reported in the literature. Different tube diameters were used in the simulation, with the Reynolds number varied from 3000 to 10000. The results showed that an increase in turbulence intensity led to a significant increase in the turbulent kinetic energy, condensation rate, average convective Nusselt number and change on the pressure drop in the heat exchanger. The effects of inlet flow Reynolds number and tube diameter on the heat and mass transfer were also presented and discussed.


Author(s):  
Eiyad Abu-Nada ◽  
AbdelSalam Al-Sarkhi

The current research investigates the effect of Reynolds number and Knudsen number on the coefficient of skin friction and reattachment length for a micro-scale fluid flow over a step mounted on a lower wall of a micro-channel. Five Reynolds numbers are studied Re = 1, 10, 25, 50, and 75 and the Knudsen number is varied from 1×10−3 to 0.1. Finite difference method with non-uniform grid is used to solve the incompressible Navier Stokes equations accompanied with velocity slip boundary condition. As Knudsen number (Kn) decreases the magnitude of modified local shear stress (1/2 Cf Re), on the upper wall of the channel, increases. In the circulation zone behind the step and for the case of high Reynolds number (Re = 50 and Re = 75) the modified local shear stress increases as Knudsen number increases. Results show that the modified total skin friction (1/2 CD Re) decreases as the Knudsen number increases. The modified total skin friction drops significantly with Knudsen number for Kn >= 1 × 10−2. However, (1/2 CD Re) is relatively independent of Knudsen number for Kn < 1 × 10−2. Finally, for 1 × 10−2 < Kn < 0.1, as Knudsen number increase the reattachment length increases.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Ali Nouri-Borujerdi ◽  
Ardalan Shafiei Ghazani

In this paper, compressible and incompressible flows through planar and axisymmetric sudden expansion channels are investigated numerically. Both laminar and turbulent flows are taken into consideration. Proper preconditioning in conjunction with a second-order accurate advection upstream splitting method (AUSM+-up) is employed. General equations for the loss coefficient and pressure ratio as a function of expansion ratio, Reynolds number, and the inlet Mach number are obtained. It is found that the reattachment length increases by increasing the Reynolds number. Changing the flow regime to turbulent results in a decreased reattachment length. Reattachment length increases slightly with a further increase in Reynolds number. At a given inlet Mach number, the maximum value of the ratio of the reattachment length to step height occurs at the expansion ratio of about two. Moreover, the pressure loss coefficient is a monotonic increasing function of expansion ratio and increases drastically by increasing Mach number. Increasing inlet Mach number from 0.1 to 0.2 results in an increase in pressure loss coefficient by less than 5%. However, increasing inlet Mach number from 0.4 to 0.6 results in an increase in loss coefficient by 70–100%, depending on the expansion ratio. It is revealed that increasing Reynolds number beyond a critical value results in the loss of symmetry for planar expansions. Critical Reynolds numbers change adversely to expansion ratio. The flow regains symmetry when the flow becomes turbulent. Similar bifurcating phenomena are observed beyond a certain Reynolds number in the turbulent regime.


Sign in / Sign up

Export Citation Format

Share Document