Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum

Author(s):  
M. Bahrami ◽  
J. R. Culham ◽  
M. M. Yovanovich ◽  
G. E. Schneider

The thermal contact resistance (TCR) problem is categorized into three different problems: geometrical, mechanical, and thermal. Each problem includes a macro and micro scale sub-problem; existing theories and models for each part are reviewed. Empirical correlations for microhardness, and the equivalent (sum) rough surface approximation are discussed. Suggested correlations for estimating the mean absolute surface slope are summarized and compared with experimental data. The classical conforming rough contact models, i.e elastic and plastic, as well as elastoplastic models are reviewed. A set of scale (dimensionless) relationships are derived for the contact parameters, i.e. the mean microcontact size, number of micro-contacts, density of microcontacts, and the external load as functions of dimensionless separation, for the above models. These scale relationships are plotted; it is graphically shown that the behavior of these models, in terms of the contact parameters, are similar. The most common assumptions of existing thermal analysis are summarized. As basic elements of thermal analysis, spreading resistance of a circular heat source on a half-space and flux tube are reviewed, also existing flux tube correlations are compared. More than 400 TCR data points collected by different re-searchers during last forty years are grouped into two limiting cases: conforming rough, and elasto-constriction. Existing TCR models are reviewed and compared with the experimental data at these two limits. It is shown that the existing theoretical models do not cover both of the above-mentioned limiting cases.

2006 ◽  
Vol 59 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M. Bahrami ◽  
J. R. Culham ◽  
M. M. Yananovich ◽  
G. E. Schneider

The thermal contact resistance (TCR) in a vacuum is studied. The TCR problem is divided into three different parts: geometrical, mechanical, and thermal. Each problem includes a macro- and microscale subproblem; existing theories and models for each part are reviewed. Empirical correlations for microhardness, and the equivalent (sum) rough surface approximation, are discussed. Suggested correlations for estimating the mean absolute surface slope are summarized and compared with experimental data. The most common assumptions of existing thermal analyses are summarized. As basic elements of thermal analyses, spreading resistance of a circular heat source on a half-space and flux tube are reviewed; also existing flux tube correlations are compared. More than 400 TCR data points collected by different researchers during the last 40years are grouped into two limiting cases: conforming rough and elastoconstriction. Existing TCR models are reviewed and compared with the experimental data at these two limits. It is shown that the existing theoretical models do not cover both of the above-mentioned limiting cases. This review article cites 58 references.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Kunyuan Zhou ◽  
Simon N. Wood ◽  
J. Michael Owen

In recent papers, orifice models have been developed to calculate the amount of ingestion, or ingress, that occurs through gas-turbine rim seals. These theoretical models can be used for externally induced (EI) ingress, where the pressure differences in the main gas path are dominant, and for rotationally induced (RI) ingress, where the effects of rotation in the wheel space are dominant. Explicit “effectiveness equations,” derived from the orifice models, are used to express the flow rate of sealing air in terms of the sealing effectiveness. These equations contain two unknown terms: Φmin, a sealing flow parameter, and Γc, the ratio of the discharge coefficients for ingress and egress. The two unknowns can be determined from concentration measurements in experimental rigs. In this paper, maximum likelihood estimation is used to fit the effectiveness equations to experimental data and to determine the optimum values of Φmin and Γc. The statistical model is validated numerically using noisy data generated from the effectiveness equations, and the simulated tests show the dangers of drawing conclusions from sparse data points. Using the statistical model, good agreement between the theoretical curves and several sets of previously published effectiveness data is achieved for both EI and RI ingress. The statistical and theoretical models have also been used to analyze previously unpublished experimental data, the results of which are included in separate papers. It is the ultimate aim of this research to apply the effectiveness data obtained at rig conditions to engine-operating conditions.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Bensaad Bourassia ◽  
Bourouga Brahim

Abstract This research deals with the evolution of the structure of the sapphire–brass interface due to the variation of contact pressure. This evolution primarily affects the essential parameters that govern the thermal contact resistance (TCR), namely, the contact point density N, the ratio of real area of contact S*, and the distance d separating the median contact planes. The combination of three measurement techniques, namely, profilometry, imaging, and mechanical characterization, was used for the purpose of investigating the structural variation of the interface. Alternatively, the TCR, which prevails at the interface, was estimated. Thus, the object of our study is to propose an original and new experimental approach allowing at the same time the precise measurement of the TCR and the estimate of the contact parameters of the interface studied constituting input data to the theoretical models of TCR. The estimated values given by these last are then compared with those measured. Through this approach, we try to open new ways of experimentation that would tend to reinforce the effort of TCR modeling. The results obtained showed that the roughness parameters Ra and Rq are independent of loading. The roughness Rp, which is considered equal to d, is sensitive to loading and has the same decreasing behavior under the effect of loading. The determination of S*, using the hardness testing, is even more relevant when the effective hardness Hc is considered. Analysis of data for the estimation of the TCR shows that the comparisons with the reference model (Bardon) attest to the relevance of our approach.


1986 ◽  
Vol 66 (4) ◽  
pp. 947-952 ◽  
Author(s):  
H. A. QUAMME

The effects of bud excision, cooling rate, and preconditioning temperature on the mean low-temperature exotherm (LTE) of grape buds were studied to determine the appropriate methodology for measurement of hardiness of Vitis vinifera L. and Vitis vinifera hybrid buds using thermal analysis. Excision of Maréchal Foch buds to exclude any of the stem tissue raised the LTE temperature above that obtained with the bud attached to a piece of the stem. Cooling rates between 1.5 and 10 °C h−1 did not affect the LTE temperature of Marechal Foch and Okanagan Riesling buds, but at the most rapid rate of cooling, 40 °C h−1, a lack of thermal contact between the sensor and the tissue produced an error in measurement. The LTE temperature determined on the buds of eight cultivars was within 0.9 °C of the temperature which killed 50% of the buds. Preconditioning the buds at −5 °C for 7 d and then −10 °C for 3 d improved the ability of thermal analysis to discriminate the differences in freezing resistance among the cultivars Marechal Foch, Okanagan Riesling and Lakemont, in the autumn; but not in mid-winter. Methods for mounting stem sections on the thermocouples were developed and are described.Key words: Grape, cold hardiness, supercooling, exotherm, Vitis


Author(s):  
Kunyuan Zhou ◽  
Simon N. Wood ◽  
J. Michael Owen

In recent papers, orifice models have been developed to calculate the amount of ingestion, or ingress, that occurs through gas-turbine rim seals. These theoretical models can be used for externally-induced (EI) ingress, where the pressure differences in the main gas path are dominant, and for rotationally-induced (RI) ingress, where the effects of rotation in the wheel-space are dominant. Explicit ‘effectiveness equations’, derived from the orifice models, are used to express the flow rate of sealing air in terms of the sealing effectiveness. These equations contain two unknown terms: Φmin, a sealing flow parameter, and Γc, the ratio of the discharge coefficients for ingress and egress. The two unknowns can be determined from concentration measurements in experimental rigs. In this paper, maximum likelihood estimation is used to fit the effectiveness equations to experimental data and to determine the optimum values of Φmin and Γc. The statistical model is validated numerically using noisy data generated from the effectiveness equations, and the simulated tests show the dangers of drawing conclusions from sparse data points. Using the statistical model, good agreement between the theoretical curves and several sets of previously-published effectiveness data is achieved for both EI and RI ingress. The statistical and theoretical models have also been used to analyse previously-unpublished experimental data, the results of which are included in separate papers. It is the ultimate aim of this research to apply the effectiveness data obtained at rig conditions to engine-operating conditions.


2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


2019 ◽  
Author(s):  
Liwei Cao ◽  
Danilo Russo ◽  
Vassilios S. Vassiliadis ◽  
Alexei Lapkin

<p>A mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed to identify physical models from noisy experimental data. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the number of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was coupled with the collection of experimental data in an automated fashion, and was proven to be successful in identifying the correct physical models describing the relationship between the shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of reactions. Future work will focus on addressing the limitations of the formulation presented in this work, by extending it to be able to address larger complex physical models.</p><p><br></p>


1985 ◽  
Vol 50 (4) ◽  
pp. 920-929 ◽  
Author(s):  
Jiří Sedláček

CNDO/2 calculations for simple models of adsorption and dehydration reactions of secondary aliphatic and aromatic alcohols on polar catalysts are presented. The models involve selected stages of elimination mechanisms of various types (E1, E2 and E1cB elimination). Calculated quantum chemical quantities were correlated with reported experimental data. It is shown that reactivities for the series of substituted phenylethanols correlate very well with the ease of carbonium ion formation. In the case of aliphatic alcohols, calculated quantities correlate generally with the reactivities on SiO2 and are in anticorrelation with the reactivities on Al2O3.NaOH.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Md Arifuzzaman ◽  
Muhammad Aniq Gul ◽  
Kaffayatullah Khan ◽  
S. M. Zakir Hossain

There are several environmental factors such as temperature differential, moisture, oxidation, etc. that affect the extended life of the modified asphalt influencing its desired adhesive properties. Knowledge of the properties of asphalt adhesives can help to provide a more resilient and durable asphalt surface. In this study, a hybrid of Bayesian optimization algorithm and support vector regression approach is recommended to predict the adhesion force of asphalt. The effects of three important variables viz., conditions (fresh, wet and aged), binder types (base, 4% SB, 5% SB, 4% SBS and 5% SBS), and Carbon Nano Tube doses (0.5%, 1.0% and 1.5%) on adhesive force are taken into consideration. Real-life experimental data (405 specimens) are considered for model development. Using atomic force microscopy, the adhesive strength of nanoscales of test specimens is determined according to functional groups on the asphalt. It is found that the model predictions overlap with the experimental data with a high R2 of 90.5% and relative deviation are scattered around zero line. Besides, the mean, median and standard deviations of experimental and the predicted values are very close. In addition, the mean absolute Error, root mean square error and fractional bias values were found to be low, indicating the high performance of the developed model.


Sign in / Sign up

Export Citation Format

Share Document