Aerogel for Microsystems Thermal Insulation: System Design and Process Development

Author(s):  
Brian Smith ◽  
David Romero ◽  
Damena Agonafer ◽  
Jason Gu ◽  
Cristina H. Amon

Extreme miniaturization in the microelectronics component market along with the emergence of system-on-chip applications has driven interest in correspondingly small-scale thermal management designs requiring novel material systems. This paper concentrates on aerogel, which is an amorphous, nanoporous dielectric oxide fabricated through a sol-gel process. Its extremely high porosity leads to very low thermal conductivity and dielectric constants. Significant research has been devoted to its electrical properties; however, there are several emerging applications that can leverage the thermal characteristics as well. Two promising applications are investigated in this paper: a monolithically integrated infrared sensor that requires thermal isolation between sensor and silicon substrate, and an ultra-miniature crystal oscillator device which demands thermal insulation of the crystal for low-power operation. This paper identifies the potential benefits of aerogel in these applications through system modeling, demonstrates aerogel’s compatibility with standard low-cost microfabrication techniques, and presents results of thermal testing of aerogel films compared with other microelectronics insulators and available data in the literature. The goal is to explore system thermal design using aerogel while demonstrating its feasibility through experimentation. The combination of numerical simulations, Bayesian surrogate modeling, and process development helps to refine candidate aerogel applications and allow the designer to explore thermal designs which have not previously been possible in large-scale microelectronics system production.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1899 ◽  
Author(s):  
Haiwei Yang ◽  
Zongqian Wang ◽  
Zhi Liu ◽  
Huan Cheng ◽  
Changlong Li

Aerogel fiber, with the characteristics of ultra-low density, ultra-high porosity, and high specific surface area, is the most potential candidate for manufacturing wearable thermal insulation material. However, aerogel fibers generally show weak mechanical properties and complex preparation processes. Herein, through firstly preparing a cellulose acetate/polyacrylic acid (CA/PAA) hollow fiber using coaxial wet-spinning followed by injecting the silk fibroin (SF) solution into the hollow fiber, the CA/PAA-wrapped SF aerogel fibers toward textile thermal insulation were successfully constructed after freeze-drying. The sheath (CA/PAA hollow fiber) possesses a multiscale porous structure, including micropores (11.37 ± 4.01 μm), sub-micron pores (217.47 ± 46.16 nm), as well as nanopores on the inner (44.00 ± 21.65 nm) and outer (36.43 ± 17.55 nm) surfaces, which is crucial to the formation of a SF aerogel core. Furthermore, the porous CA/PAA-wrapped SF aerogel fibers have many advantages, such as low density (0.21 g/cm3), high porosity (86%), high strength at break (2.6 ± 0.4 MPa), as well as potential continuous and large-scale production. The delicate structure of multiscale porous sheath and ultra-low-density SF aerogel core synergistically inhibit air circulation and limit convective heat transfer. Meanwhile, the high porosity of aerogel fibers weakens heat transfer and the SF aerogel cellular walls prevent infrared radiation. The results show that the mat composed of these aerogel fibers exhibits excellent thermal insulating properties with a wide working temperature from −20 to 100 °C. Therefore, this SF-based aerogel fiber can be considered as a practical option for high performance thermal insulation.


2021 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Masood Ibni Nazir ◽  
Ikhlaq Hussain ◽  
Aijaz Ahmad ◽  
Irfan Khan ◽  
Ayan Mallik

The world today is plagued with problems of increased transmission and distribution (T&D) losses leading to poor reliability due to power outages and an increase in the expenditure on electrical infrastructure. To address these concerns, technology has evolved to enable the integration of renewable energy sources (RESs) like solar, wind, diesel and biomass energy into small scale self-governing power system zones which are known as micro-grids (MGs). A de-centralised approach for modern power grid systems has led to an increased focus on distributed energy resources and demand response. MGs act as complete power system units albeit on a small scale. However, this does not prevent them from large operational sophistication allowing their independent functioning in both grid-connected and stand-alone modes. MGs provide greater reliability as compared to the entire system owing to the large amount of information secured from the bulk system. They comprise numerous sources like solar, wind, diesel along with storage devices and converters. Several modeling schemes have been devised to reduce the handling burden of large scale systems. This paper gives a detailed review of MGs and their architecture, state space representation of wind energy conversion systems & solar photovoltaic (PV) systems, operating modes and power management in a MG and its impact on a distribution network.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2000 ◽  
Vol 45 (4) ◽  
pp. 396-398
Author(s):  
Roger Smith
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Evi Rahmawati ◽  
Irnin Agustina Dwi Astuti ◽  
N Nurhayati

IPA Integrated is a place for students to study themselves and the surrounding environment applied in daily life. Integrated IPA Learning provides a direct experience to students through the use and development of scientific skills and attitudes. The importance of integrated IPA requires to pack learning well, integrated IPA integration with the preparation of modules combined with learning strategy can maximize the learning process in school. In SMP 209 Jakarta, the value of the integrated IPA is obtained from 34 students there are 10 students completed and 24 students are not complete because they get the value below the KKM of 68. This research is a development study with the development model of ADDIE (Analysis, Design, Development, Implementation, and Evaluation). The use of KPS-based integrated IPA modules (Science Process sSkills) on the theme of rainbow phenomenon obtained by media expert validation results with an average score of 84.38%, average material expert 82.18%, average linguist 75.37%. So the average of all aspects obtained by 80.55% is worth using and tested to students. The results of the teacher response obtained 88.69% value with excellent criteria. Student responses on a small scale acquired an average score of 85.19% with highly agreed criteria and on the large-scale student response gained a yield of 86.44% with very agreed criteria. So the module can be concluded receiving a good response by the teacher and students.


2019 ◽  
Vol 61 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Loretta Lees

Abstract Gentrification is no-longer, if it ever was, a small scale process of urban transformation. Gentrification globally is more often practised as large scale urban redevelopment. It is state-led or state-induced. The results are clear – the displacement and disenfranchisement of low income groups in favour of wealthier in-movers. So, why has gentrification come to dominate policy making worldwide and what can be done about it?


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Bùi Thị Bích Lan

In Vietnam, the construction of hydropower projects has contributed significantly in the cause of industrialization and modernization of the country. The place where hydropower projects are built is mostly inhabited by ethnic minorities - communities that rely primarily on land, a very important source of livelihood security. In the context of the lack of common productive land in resettlement areas, the orientation for agricultural production is to promote indigenous knowledge combined with increasing scientific and technical application; shifting from small-scale production practices to large-scale commodity production. However, the research results of this article show that many obstacles in the transition process are being posed such as limitations on natural resources, traditional production thinking or the suitability and effectiveness of scientific - technical application models. When agricultural production does not ensure food security, a number of implications for people’s lives are increasingly evident, such as poverty, preserving cultural identity, social relations and resource protection. Since then, it has set the role of the State in researching and building appropriate agricultural production models to exploit local strengths and ensure sustainability.


2018 ◽  
Vol 1 (3) ◽  
pp. 156-165 ◽  
Author(s):  
Nasirudeen Abdul Fatawu

Recent floods in Ghana are largely blamed on mining activities. Not only are lives lost through these floods, farms andproperties are destroyed as a result. Water resources are diverted, polluted and impounded upon by both large-scale minersand small-scale miners. Although these activities are largely blamed on behavioural attitudes that need to be changed, thereare legal dimensions that should be addressed as well. Coincidentally, a great proportion of the water resources of Ghana arewithin these mining areas thus the continual pollution of these surface water sources is a serious threat to the environmentand the development of the country as a whole. The environmental laws need to be oriented properly with adequate sanctionsto tackle the impacts mining has on water resources. The Environmental Impact Assessment (EIA) procedure needs to bestreamlined and undertaken by the Environmental Protection Agency (EPA) and not the company itself.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document