Thermal Transport in Finite-Sized Nanocomposites

Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

We report finite volume simulations of the phonon Boltzmann Transport Equation (BTE) for heat conduction in periodic nanowire composites. Models for phonon transport across heterogeneous interfaces are developed, and simulations are performed over a wide range of Knudsen numbers. Conditions are identified under which the thermal conductivity of the composite material is less than the bulk thermal conductivity of the individual host materials and under which the alloy limit of thermal conductivity is recovered. We also compute the length scale needed to achieve bulk behavior in nanoscale composites. The results of this study are expected to inform and improve applications such as thermoelectric devices and flexible macroelectronics.

Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

We report finite volume simulations of the phonon Boltzmann transport equation (BTE) for heat conduction across the heterogeneous interfaces in SiGe superlattices. We employ the diffuse mismatch model with full details of phonon dispersion and polarization. Simulations are performed over a wide range of Knudsen numbers. Similar to previous studies we establish that thermal conductivity of a superlattice is much lower than the host materials for superlattice period in the submicron regime. Details of the non-equilibrium between optical and acoustic phonons that emerge due to the mismatch of phonon spectrum in silicon and germanium are delineated for the first time. Conditions are identified for which this can lead to a significant additional thermal resistance than that attributed primarily to boundary scattering of phonons. We report results for thermal conductivity for various volume fraction and superlattice periods.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

This paper examines the thermodynamic and thermal transport properties of the 2D graphene lattice. The interatomic interactions are modeled using the Tersoff interatomic potential and are used to evaluate phonon dispersion curves, density of states and thermodynamic properties of graphene as functions of temperature. Perturbation theory is applied to calculate the transition probabilities for three-phonon scattering. The matrix elements of the perturbing Hamiltonian are calculated using the anharmonic interatomic force constants obtained from the interatomic potential as well. An algorithm to accurately quantify the contours of energy balance for three-phonon scattering events is presented and applied to calculate the net transition probability from a given phonon mode. Under the linear approximation, the Boltzmann transport equation (BTE) is applied to compute the thermal conductivity of graphene, giving spectral and polarization-resolved information. Predictions of thermal conductivity for a wide range of parameters elucidate the behavior of diffusive phonon transport. The complete spectral detail of selection rules, important phonon scattering pathways, and phonon relaxation times in graphene are provided, contrasting graphene with other materials, along with implications for graphene electronics. We also highlight the specific scattering processes that are important in Raman spectroscopy based measurements of graphene thermal conductivity, and provide a plausible explanation for the observed dependence on laser spot size.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

We report finite-volume simulations of the phonon Boltzmann transport equation (BTE) for heat conduction across the heterogeneous interfaces in SiGe superlattices. The diffuse mismatch model incorporating phonon dispersion and polarization is implemented over a wide range of Knudsen numbers. The results indicate that the thermal conductivity of a Si/Ge superlattice is much lower than that of the constitutive bulk materials for superlattice periods in the submicron regime. We report results for effective thermal conductivity of various material volume fractions and superlattice periods. Details of the nonequilibrium energy exchange between optical and acoustic phonons that originate from the mismatch of phonon spectra in silicon and germanium are delineated for the first time. Conditions are identified for which this effect can produce significantly more thermal resistance than that due to boundary scattering of phonons.


2021 ◽  
Vol 871 ◽  
pp. 203-207
Author(s):  
Jian Liu

In this work, we use first principles DFT calculations, anharmonic phonon scatter theory and Boltzmann transport method, to predict a comprehensive study on the thermoelectric properties as electronic and phonon transport of layered LaSe2 crystal. The flat-and-dispersive type band structure of LaSe2 crystal offers a high power factor. In the other hand, low lattice thermal conductivity is revealed in LaSe2 semiconductor, combined with its high power factor, the LaSe2 crystal is considered a promising thermoelectric material. It is demonstrated that p-type LaSe2 could be optimized to exhibit outstanding thermoelectric performance with a maximum ZT value of 1.41 at 1100K. Explored by density functional theory calculations, the high ZT value is due to its high Seebeck coefficient S, high electrical conductivity, and low lattice thermal conductivity .


Author(s):  
Neil Zuckerman ◽  
Jennifer R. Lukes

The calculation of heat transport in nonmetallic materials at small length scales is important in the design of thermoelectric and electronic materials. New designs with quantum dot superlattices (QDS) and other nanometer-scale structures can change the thermal conductivity in ways that are difficult to model and predict. The Boltzmann Transport Equation can describe the propagation of energy via mechanical vibrations in an analytical fashion but remains difficult to solve for the problems of interest. Numerical methods for simulation of propagation and scattering of high frequency vibrational quanta (phonons) in nanometer-scale structures have been developed but are either impractical at micron length scales, or cannot truly capture the details of interactions with nanometer-scale inclusions. Monte Carlo (MC) models of phonon transport have been developed and demonstrated based on similar numerical methods used for description of electron transport [1-4]. This simulation method allows computation of thermal conductivity in materials with length scales LX in the range of 10 nm to 10 μm. At low temperatures the model approaches a ballistic transport simulation and may function for even larger length scales.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jackson R. Harter ◽  
Laura de Sousa Oliveira ◽  
Agnieszka Truszkowska ◽  
Todd S. Palmer ◽  
P. Alex Greaney

We present a method for solving the Boltzmann transport equation (BTE) for phonons by modifying the neutron transport code Rattlesnake which provides a numerically efficient method for solving the BTE in its self-adjoint angular flux (SAAF) form. Using this approach, we have computed the reduction in thermal conductivity of uranium dioxide (UO2) due to the presence of a nanoscale xenon bubble across a range of temperatures. For these simulations, the values of group velocity and phonon mean free path in the UO2 were determined from a combination of experimental heat conduction data and first principles calculations. The same properties for the Xe under the high pressure conditions in the nanoscale bubble were computed using classical molecular dynamics (MD). We compare our approach to the other modern phonon transport calculations, and discuss the benefits of this multiscale approach for thermal conductivity in nuclear fuels under irradiation.


2003 ◽  
Vol 793 ◽  
Author(s):  
Ronggui Yang ◽  
Gang Chen

ABSTRACTA phonon Boltzmann transport model is established to study the lattice thermal conductivity of nanocomposites with nanowires embedded in a host semiconductor material. Special attention has been paid to cell-cell interaction using periodic boundary conditions. The simulation shows that the temperature profiles in nanocomposites are very different from those in conventional composites, due to ballistic phonon transport at nanoscale. The thermal conductivity of periodic 2-D nanocomposites is a strong function of the size of the embedded wires and the volumetric fraction of the constituent materials. At constant volumetric fraction the smaller the wire diameter, the smaller is the thermal conductivity of periodic two-dimensional nanocomposites. For fixed silicon wire dimension, the lower the atomic percentage of germanium, the lower the thermal conductivity of the nanocomposites. The results of this study can be used to direct the development of high efficiency thermoelectric materials.


Author(s):  
Qing Hao ◽  
Yue Xiao ◽  
Hongbo Zhao

Phonon transport within nanoporous bulk materials or thin films is of importance to applications in thermoelectrics, gas sensors, and thermal insulation materials. Considering classical phonon size effects, the lattice thermal conductivity KL can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. In the kinetic relationship, kL can be computed by modifying the phonon mean free paths with the characteristic length ΛPore of the porous structure. Despite some efforts using the Monte Carlo ray tracing method to extract ΛPore, the resulting KL often diverges from that predicted by phonon Monte Carlo simulations. In this work, the effective ΛPore is extracted by directly comparing the predictions by the kinetic relationship and phonon Monte Carlo simulations. The investigation covers a wide range of period sizes and volumetric porosities. In practice, these ΛPore values can be used for thermal analysis of general nanoporous materials.


2011 ◽  
Vol 55-57 ◽  
pp. 1152-1155 ◽  
Author(s):  
Xing Li Zhang ◽  
Zhao Wei Sun

Molecular, dynamics simulation and the Boltzmann transport equation are used respectively to analyze the phonon transport in Si thin film. The MD result is in good agreement with the theoretical analysis values. The results show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced and is almost independent of the temperature at the nanoscale. It was observed from the simulation results that there exists the obvious size effect on the thermal conductivity.


Author(s):  
Ankur Chattopadhyay ◽  
Arvind Pattamatta

Heat transport at nanoscales departs substantially from the well established classical laws governing the physical processes at continuum level. The Fourier Law of heat conduction cannot be applied at sub-continuum level due to its inability in modeling non-equilibrium energy transport. Therefore one must resort to a rigorous solution to the Boltzmann Transport Equation (BTE) in the realm of nanoscale transport regime. Some recent studies show that a relatively inexpensive and accurate way to predict the behavior of sub continuum energy transport in solids is via the discrete representation of the BTE referred to as the Lattice Boltzmann method (LBM). Although quite a few numerical simulations involving LBM have been exercised in the literature, there has been no clear demonstration of the accuracy of LBM over BTE; also there exists an ambiguity over employing the right lattice configurations describing phonon transport. In the present study, the Lattice Boltzmann Method has been implemented to study phonon transport in miniaturized devices. The initial part of the study focuses upon a detailed comparison of the LBM model with that of BTE for one dimensional heat transfer involving multiple length and time scales. The second objective of the present investigation is to evaluate different lattice structures such as D1Q2, D1Q3, D2Q5, D2Q8, D2Q9 etc. for 1-D and 2-D heat conduction. In order to reduce the modeling complexity, gray model assumption based on Debye approximation is adopted throughout the analysis. Results unveil that the accuracy of solution increases as the number of lattice directions taken into account are incremented from D2Q5 to D2Q9. A substantial increase in solution time with finer directional resolutions necessitates an optimum lattice. A novel lattice dimension ‘Mod D2Q5’ has been suggested and its performance is also compared with its compatriots. It is also demonstrated that the inclusion of the center point within a particular lattice structure can play a significant role in the prediction of thermal conductivity in the continuum level. However, as the size of the device comes down to allow high Knudsen numbers, in the limiting case of ballistic phonon transport, the choice of lattice seems to have negligible effect on thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document