An Experimental Study of the Vaporization Characteristics of Diesel-Benzyl Azides Blend Droplets

Author(s):  
Kai Han ◽  
Geng Fu ◽  
Changlu Zhao ◽  
Bolan Liu ◽  
Shibo Ma

An experimental study of diesel-benzyl azides blend droplets vaporization characteristics was carried out to study the reasons of diesel-benzyl azides blend shortened combustion duration using suspended droplet device and a high-speed video camera. Experiments were performed at atmospheric pressure, ambient temperature range 480–933 K, and initial droplet diameter of 0.98, 1.42, 1.88 mm. The results show a shorten in diesel-benzyl azides blend droplet lifetime by 10% compared to diesel droplet at 1.42 mm initial droplet diameter and 933 K ambient temperature companion to puffing. The above results support the original idea of designing diesel-benzyl azides blend where the energy released by the decomposition of azides improves the vaporization and the release of nitrogen leads to the breakup of the droplet. In addition, it is observed that the blend lifetime decrease with increasing ambient temperature compared to diesel droplet lifetime. More nitrogen is released and the expansion of bubbles is more violent with increasing initial droplet diameter.

2019 ◽  
Vol 196 ◽  
pp. 00041
Author(s):  
Dmitry Kochkin ◽  
Valentin Belosludtsev ◽  
Veronica Sulyaeva

This paper is an experimental study of thermocapillary breakdown phenomenon in a horizontal film of liquid placed on a silicon nonisothermal substrate. With the help of a high-speed video camera the speed of the three-phase contact line was measured during the growth of a dry spot.


2019 ◽  
Vol 24 (2) ◽  
pp. 129-142
Author(s):  
Arif Widyatama ◽  
Akmal Irfan Majid ◽  
Teguh Wibowo ◽  
Deendarlianto Deendarlianto ◽  
Samsul Kamal

This study was aimed at investigating the phenomena and interactions between water droplets and hot metal surfaces using an experimental method. In this study, the droplet was dropped from 50 mm from the top of the metal surface with a frequency of 8.5 droplets per second. The observed droplet diameter was 3.12 mm. The metal used was copper with a surface temperature between 110-240 ° C. High speed video camera with a speed of 2000 fps was used to record visual data. Then the image processing technique was applied to calculate the change in droplet diameter. The results show that at low temperatures, droplets tend to maintain their initial position of contact with fluctuating deformations. While at high temperatures, a bounce phenomenon occurs which results in collisions between droplets being imperfect. Visualization results can reveal the complete change in the droplet geometry in the form of spreading ratio and complete apex height. The temperature of 140° C is the initial transition area for phenomena that result in droplets has no contact with hot surfaces so that the process of heat transfer between surfaces is inhibited.STUDI EKSPERIMEN PADA FENOMENA SUCCESSIVE DROPLETS MENUMBUK PERMUKAAN TEMBAGA PANASPenelitian ini bertujuan untuk mempelajari fenomena dan interaksi antara tetesan air (droplet) dan permukaan logam panas dengan metode eksperimental. Pada penelitian ini, droplet dijatuhkan dari posisi 50 mm dari atas permukaan logam dengan frekuensi 8,5 droplet per detik. Diameter droplet yang diamati sebesar 3,12 mm. Logam yang digunakan adalah tembaga dengan temperatur permukaan di antara 110-240° C. High speed video camera dengan kecepatan 2000 fps digunakan untuk merekam data visual. Teknik image processing diaplikasikan untuk menghitung perubahan diameter droplet. Hasil penelitian menunjukkan bahwa pertama, pada temperatur rendah, droplet cenderung mempertahankan posisi awal kontak dengan perubahan bentuk yang fluktuatif. Kedua, temperatur tinggi, terjadi fenomena bouncing yang mengakibatkan tumbukan antar droplet menjadi tidak sempurna. Hasil visualisasi dapat mengungkap perubahan geometri droplet berupa spreading ratio dan apex height secara lengkap. Dari penelitian ini juga diketahui bahwa temperatur 140°C menjadi daerah transisi awal terjadinya fenomena yang mengakibatkan droplet tidak bersinggungan dengan permukaan panas sehingga proses perpindahan kalor antar permukaan terhambat.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2168 ◽  
Author(s):  
Donggi Lee ◽  
Jonghan Won ◽  
Seung Baek ◽  
Hyemin Kim

Autoignition of an ethanol-based gel droplet was experimentally investigated by adding 10 wt % of methylcellulose as gellant to liquid ethanol. Experimental studies of the ignition behavior of the gel droplet were found to be quite rare. The initial droplet diameter was 1.17 ± 0.23 mm. The gel droplet was suspended on a K-type thermocouple and its evaporation, ignition and combustion characteristics were evaluated and compared with pure ethanol at an ambient temperature of 600, 700, and 800 °C under atmospheric pressure conditions. The gel droplet exhibited swelling and vapor jetting phenomena. Before ignition, a linear decrease in droplet diameter followed by a sudden increase was repeatedly observed, which was caused by evaporation and swelling processes, respectively. Major droplet swelling was detected just before the onset of ignition at all temperatures. But no further swelling was detected after ignition. For the gel droplet, the ignition delay accounted for 93% of the droplet lifetime at 600 °C, and 88% at 700 °C, but only 31% at 800 °C. Its average burning rate was also evaluated for all temperatures. At 800 °C, the gellant layer no longer exerts any influence on the combustion of the gel droplet.


2018 ◽  
Vol 192 ◽  
pp. 02028
Author(s):  
Hassan Zulkifli Abu ◽  
Ibrahim Aniza ◽  
Mohamad Nor Norazman

Small-scale blast tests were carried out to observe and measure the influence of sandy soil towards explosive blast intensity. The tests were to simulate blast impact imparted by anti-vehicular landmine to a lightweight armoured vehicle (LAV). Time of occurrence of the three phases of detonation phase in soil with respect to upward translation time of the test apparatus were recorded using high-speed video camera. At the same time the target plate acceleration was measured using shock accelerometer. It was observed that target plate deformation took place at early stage of the detonation phase before the apparatus moved vertically upwards. Previous data of acceleration-time history and velocity-time history from air blast detonation were compared. It was observed that effects of soil funnelling on blast wave together with the impact from soil ejecta may have contributed to higher blast intensity that characterized detonation in soil, where detonation in soil demonstrated higher plate velocity compared to what occurred in air blast detonation.


2014 ◽  
Vol 782 ◽  
pp. 3-7
Author(s):  
Kenji Shinozaki ◽  
Motomichi Yamamoto ◽  
Kohta Kadoi ◽  
Peng Wen

Solidification cracking during welding is very serious problem for practical use. Therefore, there are so many reports concerning solidification cracking. Normally, solidification cracking susceptibility of material is quantitatively evaluated using Trans-Varestraint test. On the other hand, local solidification cracking strain was tried to measure precisely using in-situ observation method, called MISO method about 30 years ago. Recently, digital high-speed video camera develops very fast and its image quality is very high. Therefore, we have started to observe solidification crack using in site observation method. In this paper, the local critical strain of a solidification crack was measured and the high temperature ductility curves of weld metals having different dilution ratios and different grain sizes to evaluate quantitatively the effects of dilution ratio and grain size on solidification cracking susceptibility by using an improved in situ observation method.


2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


Author(s):  
P Eriksson ◽  
V Wikström ◽  
R Larsson

In a previous investigation, grease thickener fibres were tracked as they passed through an elastohydrodynamic (EHD) contact in pure rolling using interferometry in a standard ball-and-disc apparatus. In order to capture single thickener fibres, a high-speed video camera was used. Here, the experiments have been repeated introducing different amounts of side slip for different rolling speeds and a faster video camera capable of capturing 4500 frames/s. The contact was lubricated with a continuous supply of grease. Two greases, based on the same synthetic poly(α-olefin) but thickened with Li-12-OH and lithium complex soap respectively, were studied. It was observed that the thickener fibres were stretched both before entering the contact and as they passed through it. Fibres seem to avoid the minimum film thickness regions and, if they enter, the film is restored immediately after passage.


1985 ◽  
Vol 1 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Robert J. Gregor ◽  
Marilyn Pink

As part of an ongoing project to evaluate elite track and field throwers in the United States, the javelin competition was filmed during the 1983 Pepsi Invitational Track Meet. A high-speed video camera (Spin Physics SP2000) was positioned orthogonal to the javelin runway to record the release of all throws. During this competition, Tom Petranoff’s world record (99.72 m) was filmed at 200 fields per second. Subsequent frame-by-frame digitization yielded results consistent with reports in the literature. Release velocity was 32.3 m/s and represents one of the highest values ever reported. Angle of release was .57r, javelin attitude at release was .64r» and angle of attack was .07r. While optimum values for these release parameters, in light of published results, remain open to discussion, the results presented here represent unique information on a world record performance and can serve as a basis of comparison for future performances.


Sign in / Sign up

Export Citation Format

Share Document