Numerical Analysis and Experimental Evaluation of Cylinder Liner Macro-Scale Surface Texturing

Author(s):  
Renlian Ma ◽  
Salaheldin A. Mohamad ◽  
Xiqun Lu ◽  
Wanyou Li

An experimental and theoretical study is presented to study the effect of surface texturing in the form of circumferential oil grooves on improving the tribological properties of piston ring-cylinder liner tribosystem. Tests were performed on a reciprocating test rig with actual piston rings and cylinder liner segments, and a numerical model has been developed. A comparison was made between the performance of the textured cylinder liners and un-textured cylinder liners. It was found that with the smaller oil groove area density, the reduction in friction force is more obvious, Parabolic and triangular oil grooves are more efficient in friction reducing, and the prediction results by numerical model match the experimental results well in most case.

Author(s):  
Parul Mishra ◽  
Ramkumar Penchaliah

It is well-established that the piston ring/cylinder liner (PRCL) contact is the major contributor to friction losses in the internal combustion engine. While numerous studies have evaluated the individual effect of surface engineering techniques like surface texturing, coating, on the PRCL system, however, its combined effect has not been thoroughly explored. In this work, the combined effect of surface coating and texturing on the frictional properties of piston ring/cylinder liner (PRCL) contact in different lubrication regimes has been simulated using a reciprocating tribometer rig. A cylinder liner of cast iron material and three different types of piston ring coatings, namely Diamond-like-carbon (DLC), chrome, and moly-chrome-ceramic (MCC) were used as samples. Under all lubrication regimes, the coated samples with texturing had better frictional performance compared to non-textured coated samples. The maximum friction reduction was observed for textured DLC coated samples under boundary lubrication regime. This behaviour was proposed to be a result of the synergistic effect of graphitisation and texturing.


2014 ◽  
Vol 620 ◽  
pp. 278-284 ◽  
Author(s):  
Salaheldin A. Mohamad ◽  
Qun Zheng ◽  
Xi Qun Lu

Piston ring lubrication in some types of low-speed 2-stroke marine diesel engines is completely different from those in medium-or high-speed diesel engines since the inner surface of cylinder liners are textured with circular grooves in macro-scale and honing texture in micro-scale. In this paper, a numerical model has been developed to study the potential of use of cylinder bore surface texturing, in the form of circumferential oil grooves with different dimensions and densities, and their efficiency to improve the tribological properties of piston ring-cylinder liner tribo-system. The average Reynolds equation has been employed in the area of micro-scale texture and the effect of macro-scale grooves has been incorporated to improve the currently lubrication model. The results showed that the cylinder liner oil grooves can efficiently be used to maintain hydrodynamic effect. It is also shown that optimum surface texturing may substantially reduce the friction losses between piston ring and cylinder liner.


2018 ◽  
Vol 70 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Thomas Wopelka ◽  
Ulrike Cihak-Bayr ◽  
Claudia Lenauer ◽  
Ferenc Ditrói ◽  
Sándor Takács ◽  
...  

Purpose This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime. Design/methodology/approach Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear. Findings A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring. Originality/value The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
N. Morris ◽  
R. Rahmani ◽  
H. Rahnejat ◽  
P. D. King ◽  
S. Howell-Smith

Minimization of parasitic losses in the internal combustion (IC) engine is essential for improved fuel efficiency and reduced emissions. Surface texturing has emerged as a method palliating these losses in instances where thin lubricant films lead to mixed or boundary regimes of lubrication. Such thin films are prevalent in contact of compression ring to cylinder liner at piston motion reversals because of momentary cessation of entraining motion. The paper provides combined solution of Reynolds equation, boundary interactions, and a gas flow model to predict the tribological conditions, particularly at piston reversals. This model is then validated against measurements using a floating liner for determination of in situ friction of an engine under motored condition. Very good agreement is obtained. The validated model is then used to ascertain the effect of surface texturing of the liner surface during reversals. Therefore, the paper is a combined study of numerical predictions and the effect of surface texturing. The predictions show that some marginal gains in engine performance can be expected with laser textured chevron features of shallow depth under certain operating conditions.


Author(s):  
B Yang ◽  
Y Zhao

A simulation model is developed for the piston ring–cylinder liner lubrication problem in a CO2 refrigeration reciprocating compressor. Patir and Cheng’s modified Reynolds equation including pressure flow factors, shear flow factors, and shear stress factors is used to consider the effect of surface roughness on lubrication. The piston ring is assumed to be fully flooded at the leading edge, and both the cavitation case and fully flooded case are considered at the trailing edge. Modified Reynolds boundary condition is employed. The simulation results show that, the minimum oil film thickness has a maximum magnitude in the middle stroke region for downward stroke and upward stroke. In the vicinity of the dead centres, the magnitude of the friction force is much higher than that in the middle stroke region. The oil film pressure distribution along the piston ring thickness at different specified crank angles is indicated. The effects of ring thickness, crown height on minimum oil film thickness, and friction force are also investigated.


2005 ◽  
Vol 127 (3) ◽  
pp. 632-638 ◽  
Author(s):  
Y. Kligerman ◽  
I. Etsion ◽  
A. Shinkarenko

An analytical model is developed to study the potential use of partial laser surface texturing (LST) for reducing the friction between a piston ring and cylinder liner. The hydrodynamic pressure distribution and the time-dependent clearance between the piston ring and cylinder liner are obtained from a simultaneous solution of the Reynolds equation and the ring equation of motion in the radial direction. The time behavior of the friction force is calculated from the shear stresses in the viscous fluid film and the time-dependent clearance. An intensive parametric investigation is performed to identify the main parameters of the problem. The optimum LST parameters such as dimples depth, texture area density, and textured portion of the nominal contact surface of the piston ring are evaluated.


Author(s):  
Fabio Araujo ◽  
Luiz de Sá Filho ◽  
Jason Bieneman ◽  
Eduardo Nocera ◽  
Edney Deschauer Rejowski

The heavy duty diesel (HDD) engine market continues to strive for improvements in engine efficiency and durability which places ever increasing development demands on the power cylinder unit. One of the methods being developed to help meet these demands is coated cylinder bore technology. By applying a coating to the inner diameter surface of a cylinder liner the wear on the liner can be significantly reduced. The reduction in liner wear is not however the only advantage that this technology can offer. Liner coatings can also offer corrosion protection, reductions in wear on the running surface of the rings, improved scuff resistance, and enable improvements in the efficiency of the engine. New piston ring technologies will be valuable in maximizing these advantages and their contribution will be detailed. The system must be properly designed to take full advantage of all of these opportunities. In this paper both the advantages and difficulties coated liners present will be explored by evaluating the impact on the liner, rings and the fuel consumption. This paper will additionally provide details regarding the different liner coating technologies being developed today. To support these recommendations the system’s performance characteristics will be demonstrated through rig testing and engine performance measurements.


Author(s):  
C. Anderberg ◽  
S. Johansson ◽  
P. H. Nilsson ◽  
R. Ohlsson ◽  
B. G. Rose´n

Demands for decreased environmental impact from vehicles are resulting in a strong push for decreased engine oil, fuel consumption and weight. New machining and coating technologies have offered ways to attack these problems. Engine oil and fuel consumption are to a great extent controlled by the topography of the cylinder liner surface and it is therefore important to optimise this surface. Recent engine tests have shown a reduction in oil consumption when using cylinder liners with a smoother finish than that given by the current plateau honing. However, engine manufacturers are hesitant to introduce smoother liner surfaces because of fears of severe wear and scuffing. There is also the possibility that smoother liner surfaces may be more sensitive to the choice of piston ring finishes. This paper therefore seeks to investigate the functional performance and resistance to wear of these smooth cylinder liners and the mating top ring surfaces.


2015 ◽  
Vol 787 ◽  
pp. 327-331
Author(s):  
S. Prakash ◽  
G. Nagarajan

A Theoretical model was developed to study the potential use of surface texturing for reducing the friction between a piston ring and cylinder liner. The model can predict the load-carrying capacity and friction force of the piston compression ring from Reynolds equation. The investigation is carried out using different dimple depths as well as different dimple diameters. Micro-dimples on the piston ring were able to generate significant hydrodynamic support. Numerical results show that surface texturing can decrease the friction force and extend the load-carrying capacity. The optimum surface texturing parameters such as dimples depth and dimples diameter were found.


Sign in / Sign up

Export Citation Format

Share Document