Effects of Ammonia Gas Mixed Into Intake Air on Combustion and Emissions Characteristics in Diesel Engine

Author(s):  
Yoichi Niki ◽  
Dong-Hoon Yoo ◽  
Koichi Hirata ◽  
Hidenori Sekiguchi

This paper reports on the experimental results of the combustion and emission characteristics of a conventional diesel engine mixed ammonia (NH3) gas into the intake air, and discusses its usability. In the experiments, NH3 gas was injected into the intake pipe of the diesel engine by a gas injector. The diesel engine has a natural aspiration single cylinder with 7.7 kW rated power at 1500 rpm and a diesel injection system to inject diesel fuel into the cylinder. As experimental results on the combustion characteristics, it was confirmed that the compression and maximum pressures in the cylinder decreased and the ignition timing delayed with increasing the NH3 gas injection quantity. On the emission characteristics in the exhaust gas, NH3, water (H2O) and nitrous oxide (N2O) increased and carbon dioxide (CO2) decreased proportionally to the NH3 gas injection quantity. In contract, the nitrogen oxide (NO) was nearly the same. Moreover, it was confirmed that NH3 can be reduced by reacting with NO in a selective catalytic reduction (SCR) system.

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1269
Author(s):  
Muhammad Khristamto Aditya Wardana ◽  
Kwangchul Oh ◽  
Ocktaeck Lim

Heavy-duty diesel engines in highway use account for more than 40% of total particulate and nitrogen oxide (NOx) emissions around the world. Selective catalytic reduction (SCR) is a method with effective results to reduce this problem. This research deals with problems in the urea evaporation process and ammonia gas distribution in an SCR system. The studied system used two types of urea injectors to elucidate the quality of ammonia uniformity in the SCR system, and a 12,000-cc heavy-duty diesel engine was used for experimentation to reduce NOx in the system. The uniformity of the generated quantities of ammonia was sampled at the catalyst inlet using a gas sensor. The ammonia samples from the two types of urea injectors were compared in experimental and simulation results, where the simulation conditions were based on experimental parameters and were performed using the commercial CFD (computational fluid dynamics) code of STAR-CCM+. This study produces temperatures of 371 to 374 °C to assist the vaporization phenomena of two injectors, the gas pattern informs the distributions of ammonia in the system, and the high ammonia quantity from the I-type urea injector and high quality of ammonia uniformity from the L-type urea injector can produce different results for NOx reduction efficiency quality after the catalyst process. The investigations showed the performance of two types of injectors and catalysts in the SCR system in a heavy-duty diesel engine.


Author(s):  
Yoichi Niki ◽  
Yoshifuru Nitta ◽  
Hidenori Sekiguchi ◽  
Koichi Hirata

This study focuses NH3 as an alternative fuel for internal combustion engines, because NH3 is known as a H2 carrier and its combustion does not produce CO2 causing global warming. On the other hand, some reports show that unburned NH3 and N2O appear in exhaust gas, when NH3 is used as fuel for compression ignition or spark ignition engines. NH3 is toxic and N2O is one of the greenhouse gases. These emissions should not be emitted. These reports point out that exhaust gas after treatments and/or injection strategies can be effective to reduce these emissions. From our previous investigations, it was confirmed that NH3 and N2O were contained in the exhaust gas of a conventional diesel engine with NH3 gas mixed into the engine intake. In this study, NH3 combustion processes in the diesel engine were investigated from the experimental results. Based on the investigations, a pilot or postinjection was conducted to reduce emissions of NH3 and N2O. In this paper, first the experimental results of the combustion and exhaust emission characteristics on the conventional diesel engine with NH3 gas mixed into the engine intake are shown. NH3 and N2O emissions are then verified by analyzing the exhaust gas. Next, NH3 combustion processes in the diesel engine are considered from the experimental results to report on the effects of a pilot and postdiesel fuel injection on NH3 and N2O production processes. The experimental results suggest that the multiple diesel fuel injections would be one of the effective measures to reduce N2O and NH3 emissions on NH3 and diesel dual-fueled engine.


2014 ◽  
Vol 651-653 ◽  
pp. 858-861
Author(s):  
Guan Qiang Ruan ◽  
Jin Run Cheng

The turbo diesel SCR system has been researched and analyzed in this paper. By using software of CATIA, three-dimensional physical model of SCR system has been established, and with software of AVL-FIRE, the boundary conditions have been set, simulated and optimized. In the process of SCR system optimizing, it mainly optimized the pray angle. Compare the effects of processing NOx to obtain batter optimization results. At last the optimization results are compared by bench test, and the experimental results are quite consistent with simulation.


Author(s):  
Donggon Lee ◽  
Kyusoo Jeong ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

This study describes the effects of two-stage combustion (TSC) strategy on combustion and emission characteristics in 4 cylinder common-rail direct injection (CRDI) diesel engine fueled with biodiesel blends. In the present work, to investigate the combustion and emission characteristics, the experiments were performed under various injection pressures, first injection quantity and first injection timing of TSC strategy at constant engine speed and engine load. In addition, conventional diesel fuel (ULSD) was used to compare with biodiesel blends. The experimental results show that combustion of biodiesel blends is stable for various test conditions regardless of blending ratio, and indicated specific fuel consumption (ISFC) was increased as biodiesel blending ratio increased. In the emission characteristics, biodiesel blends generated lower indicated specific nitrogen oxides (IS-NOx) and indicated specific soot (IS-Soot) emissions compared to those of ULSD when the first injection quantity increased.


Author(s):  
Nader R. Ammar

Marine diesel engines are facing challenges to cope with the emission-reduction regulations set by the international maritime organization (IMO). Hydrogen fuel is one of the alternative fuels which can be used to reduce the exhaust gas emissions from ships. The current paper investigates the effect of using diesel-hydrogen dual fuels on the environmental, energetic and exergetic performance parameters of slow speed marine diesel engine. The investigation is performed using Engineering Equation Solver (EES) software package. As a case study, slow speed diesel engine has been investigated. The results obtained revealed that the energetic and exergetic parameters are influenced by engine load and hydrogen substitution percent. The exergy efficiency is increased by 3.65%, 8.20%, 13.99%, and 21.7% for the hydrogen substitution percentages of 10%, 20%, 30%, and 40%, respectively compared with the diesel engine at full load. Environmentally, CO and CO2 emissions are reduced and NOx emissions are increased as the hydrogen energy content increases. Dual fuel engine with input hydrogen energy fractions of 10% and 20% will comply with the required NOx emission regulations set by IMO after using selective catalytic reduction (SCR) system. It will comply with the required regulations with relative percentages of 96.4% and 98.4%, respectively.


This paper represents the relative performance of a small single-cylinder diesel engine having capacity 3.5 kW. This paper covers experimental investigations of most influencing combustion parameters such as compression ratio, injection pressure and start of injection timing and their values on performance, emission and combustion characteristic of the small single-cylinder CRDI diesel engine for which the mechanical fuel injection system retrofitted with a simple version of the CRDI system. CRDI has yielded good results for large diesel and petrol engines but still not incorporate for cheaper small single-cylinder engines, typically used in the agricultural sector and decentralized power sector for a country like India. It is observed that starts of injection timing and injection pressure are the key parameters for improving the combustion characteristics and therefore engine performance while compression ratio mainly affects the emission characteristics of the engine. Retrofitted CRDI system yielded improved exhaust emission and performance of the engine.


Author(s):  
Dae Sik Kim ◽  
Ki Hyung Lee ◽  
Chang Sik Lee

The objective of this work is to investigate the effect of premixed fuel ratio on the combustion and emission characteristics in diesel engine by the experimental and numerical method. In order to investigate the effect of various factors such as the mixing ratio, EGR rate, and engine load on the exhaust emissions from the premixed charge compression ignition diesel engine, the injection amount of premixed fuel is controlled by electronic port injection system. The range of mixing ratio between dual fuels used in this study is between 0 and 0.85, and the exhaust gas is recirclulated until 30 percent of EGR rate.


Sign in / Sign up

Export Citation Format

Share Document