scholarly journals The Combustion and Emissions Performance of a Syngas-Diesel Dual Fuel Compression Ignition Engine

Author(s):  
Hongsheng Guo ◽  
W. Stuart Neill ◽  
Brian Liko

Remote communities in Canada heavily rely on reciprocating diesel generators for heat and power generation. These engines utilize diesel fuel that is imported at great expense and generate green-house gas (GHG) and pollutant emissions. Replacing diesel fuel in these engines by syngas derived from a thermo-chemical treatment of local renewable biomass can not only lower the fuel cost but also reduce GHG and pollutant emissions for remote communities. Besides, syngas-diesel dual fuel combustion can maintain the ability to revert back to diesel operation and therefore ensure reliable heat and power supply when syngas is not available. In this study, the combustion and emissions performance of a syngas-diesel dual fuel engine was investigated at low and medium loads. A single cylinder direct injection diesel engine was modified to operate using a dual fuel strategy. The diesel fuel was directly injected to the cylinder, while syngas was injected into the intake port. The effects of syngas fraction and composition on energy efficiency, cylinder pressure, exhaust temperature, and combustion stability were recorded and analyzed. The emissions data, including PM, NOx, CO, and unburned hydrocarbon, were also analyzed and reported in the paper. The results suggest that the substitution of diesel by a syngas caused a slight decrease in brake thermal efficiency and an increase in CO emissions. The effect of a syngas on soot emissions depended on the composition and/or quality. The inert component content of a syngas significantly affected NOx emissions in a syngas-diesel dual fuel internal combustion engine.

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 946 ◽  
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik

The aim of the work is a comparison of two combustion systems of fuels with different reactivity. The first is combustion of the fuel mixture and the second is combustion in a dual-fuel engine. Diesel fuel was burned with pure ethanol. Both methods of co-firing fuels have both advantages and disadvantages. Attention was paid to the combustion stability aspect determined by COVIMEP as well as the probability density function of IMEP. It was analyzed also the spread of the maximum pressure value, the angle of the position of maximum pressure. The influence of ethanol on ignition delay time spread and end of combustion process was evaluated. The experimental investigation was conducted on 1-cylinder air cooled compression ignition engine. The test engine operated with constant rpm equal to 1500 rpm and constant angle of start of diesel fuel injection. The engine was operated with ethanol up to 50% of its energy fraction.


2019 ◽  
Vol 178 (3) ◽  
pp. 155-161
Author(s):  
Łukasz NOWAK ◽  
Wojciech TUTAK

The paper presents result of combustion stability assessment of dual fuel engine. The authors analyzed results of co-combustion of diesel fuel with alcohol in terms of combustion stability. The comparative analysis of both the operational parameters of the engine and the IMEP, as the parameters determining the stability of the combustion process, were carried out. It was analyzed, among others values of the COVIMEP coefficient, the spread of the maximum pressure value, the angle of the position of maximum pressure and the probability density distribution of the IMEP. The experimental investigation was conducted on 1-cylinder air cooled compression ignition engine. The test engine operated with constant rpm equal to 1500 rpm and constant angle of start of diesel fuel injection. The engine was operat-ed with ethanol up to 50% of its energy fraction. The influence of ethanol on ignition delay time spread and end of combustion process was evaluated. It turns out that the share of ethanol does not adversely affect the stability of ignition..


Author(s):  
Shouvik Dev ◽  
David Stevenson ◽  
James Butler ◽  
Boris Tartakovsky ◽  
Hongsheng Guo ◽  
...  

Abstract Canada’s remote communities experience harsh weather much of the year and run diesel generators 24 hours a day to provide heat and power. These generators utilize diesel fuel that is transported at great expense and generate greenhouse gas (GHG) and pollutant emissions. Meanwhile, remote communities produce organic wastes, such as wastewater and food wastes. Appropriate treatment of these wastes not only improves the community health and environment, but also generates certain amount of renewable fuels, such as biogas and/or syngas. Replacing diesel fuel by the renewable fuels generated from the waste treatment in the diesel generators can offset the use of diesel and also reduce GHG and pollutant emissions in remote communities. This paper reports an application of biogas generated from wastewater treatment to replace diesel in a small diesel generator by dual fuel engine technology. With simple modification, the biogas containing 50–95% of methane was introduced into the engine intake manifold. Tests were conducted to evaluate the effects of biogas flow rate and composition on average diesel fuel consumption and emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx) and unburned hydrocarbons (HC). The results reveal that the introduction of biogas into the engine reduced the average diesel consumption. However, the reduction of average diesel consumption with increasing biogas flow rate was not linear, possibly due to the increase in HC emissions. The introduction of biogas reduced NOx emissions but increased CO emissions. A change in the composition of biogas (methane to CO2 ratio) did not significantly affect the average diesel consumption and emissions.


Author(s):  
Arash Jamali ◽  
M. Razi Nalim

Natural gas substitution for diesel can result in significant reductions in pollutant emissions. In addition, with a high ignition temperature and relatively low reactivity, natural gas can enable promising approaches to combustion engine design. In particular, the combination of low-reactivity natural gas and high-reactivity diesel may allow for optimal operation as a reactivity-controlled compression ignition (RCCI) engine, which has potential for high efficiency and low emissions. In this computational study, a lean mixture of natural gas is ignited by direct injection of diesel fuel in part-load operating condition in a model of the heavy-duty CAT3401 diesel engine. A multi-dimensional simulation was performed using a finite-volume computational code for fuel spray and combustion processes in the Reynolds-averaged Navier-Stokes (RANS) framework. Adaptive mesh refinement (AMR) and multi-zone reaction modeling enables simulation in a reasonable time. The latter approach avoids expensive kinetic calculations in every computational cell, with considerable speedup. The model produces encouraging agreement between the simulation and experimental data. For reasonable accuracy and computation cost, a minimum cell size of 0.2 millimeters is suggested for the natural gas-diesel (NGD) dual-fuel engine. The results reveal that in part-load operating condition, much of the CH4, which is used as surrogate fuel for natural gas, cannot burn. The main goal of this research work is to assess the possibility to improve the performance of Caterpillar-3401 engine in NGD dual-fuel operation by in-cylinder modification strategies. The results reveal that among different strategies, double injection of diesel fuel with an early main injection can reduce the unburned hydrocarbon (UHC) emission significantly.


2020 ◽  
pp. 146808742094094
Author(s):  
Michał Pyrc ◽  
Michał Gruca ◽  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Romualdas Juknelevičius

This study presents experimental examinations of a stationary single-cylinder compression ignition dual fuel engine for the combustion of diesel fuel with water ammonia solution. The effect of 25% water ammonia solution on the combustion, performance, emissions and stability of the dual fuel compression ignition engine was investigated, taking into account its different operating conditions. The experiments were carried out for three modes of engine operation with three loads (35%, 60% and 100%) and a change in the water ammonia solution energy fraction at 60% load, within the range from 0% to 17%. Co-combustion of diesel fuel with water ammonia solution in the test engine contributed to an increase in the ignition delay period and combustion duration, and to an increase in the heat release rate. Compared to the combustion of diesel fuel alone, combustion involving ammonia causes deterioration in the stability of the test engine operation, yet not exceeding the permissible stability indices for reciprocating combustion engines. Addition of water ammonia solution led to reduced nitrogen oxide emissions and increasing carbon monoxide and hydrocarbon emissions and did not result in significant changes in carbon dioxide emissions.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1499
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik

This paper presents results of investigation of co-combustion process of biodiesel with gasoline, in form of mixture and using dual fuel technology. The main objective of this work was to show differences in both combustion systems of the engine powered by fuels of different reactivity. This paper presents parameters of the engine and the assessment of combustion stability. It turns out that combustion process of biodiesel was characterized by lower ignition delay compared to diesel fuel combustion. For 0.54 of gasoline energetic fraction, the ignition delay increased by 25% compared to the combustion of the pure biodiesel, but for dual fuel technology for 0.95 of gasoline fraction it was decreased by 85%. For dual fuel technology with the increase in gasoline fraction, the specific fuel consumption (SFC) was decreased for all analyzed fractions of gasoline. In the case of blend combustion, the SFC was increased in comparison to dual fuel technology. An analysis of spread of ignition delay and combustion duration was also presented. The study confirmed that it is possible to co-combust biodiesel with gasoline in a relatively high energetic fraction. For the blend, the ignition delay was up to 0.54 and for dual fuel it was near to 0.95.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3857 ◽  
Author(s):  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Karol Grab-Rogaliński

One of the possibilities to reduce diesel fuel consumption and at the same time reduce the emission of diesel engines, is the use of alternative gaseous fuels, so far most commonly used to power spark ignition engines. The presented work concerns experimental research of a dual-fuel compression-ignition (CI) engine in which diesel fuel was co-combusted with CNG (compressed natural gas). The energy share of CNG gas was varied from 0% to 95%. The study showed that increasing the share of CNG co-combusted with diesel in the CI engine increases the ignition delay of the combustible mixture and shortens the overall duration of combustion. For CNG gas shares from 0% to 45%, due to the intensification of the combustion process, it causes an increase in the maximum pressure in the cylinder, an increase in the rate of heat release and an increase in pressure rise rate. The most stable operation, similar to a conventional engine, was characterized by a diesel co-combustion engine with 30% and 45% shares of CNG gas. Increasing the CNG share from 0% to 90% increases the nitric oxide emissions of a dual-fuel engine. Compared to diesel fuel supply, co-combustion of this fuel with 30% and 45% CNG energy shares contributes to the reduction of hydrocarbon (HC) emissions, which increases after exceeding these values. Increasing the share of CNG gas co-combusted with diesel fuel, compared to the combustion of diesel fuel, reduces carbon dioxide emissions, and almost completely reduces carbon monoxide in the exhaust gas of a dual-fuel engine.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
I. M. Yusri ◽  
M. K. Akasyah ◽  
R. Mamat ◽  
O. M. Ali

The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number as compared to other alternatives fuel. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using multi-cylinder, 4-stroke engine with common rail direct injection system to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar. Based on the results Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.


Sign in / Sign up

Export Citation Format

Share Document