Comparison Between a Center-Mounted and a Side-Mounted Injector for Gasoline Applications: A Computational Study

Author(s):  
Lorenzo Nocivelli ◽  
Anqi Zhang ◽  
Brandon A. Sforzo ◽  
Aniket Tekawade ◽  
Alexander K. Voice ◽  
...  

Abstract The differences between a center-mounted and a side-mounted injector for gasoline direct injection (GDI) applications are analyzed through computational fluid dynamics (CFD). The Engine Combustion Network’s (ECN) axisymmetric 8-hole Spray G injector is compared to a 6-hole injector designed to be side-mounted in an engine. Nozzle-flow simulations are carried out with the commercial CFD software CONVERGE, injecting Euro 5 certification gasoline into a constant volume chamber. Low-load operating conditions are targeted, setting the injection pressure at 50 bar and the ambient pressure to be representative of very early pilot injections. The phase change is handled with the Homogeneous Relaxation Model (HRM), which is assessed and adapted to gasoline flash-boiling conditions. The simulation domains are generated leveraging real injector internal geometries obtained by micron-resolution X-ray tomographic measurements, which introduce manufacturing tolerances and surface roughness in the computational study. Steady needle lift conditions are analyzed. The near-field fuel density distributions and plume morphologies are evaluated, validated and compared to X-ray radiography measurements. A computational best practice is defined and single plume characteristics and variability trends are highlighted as functions of the geometry of the orifices. The plume-plume interaction dynamics are identified and assessed, underlining differences from center- to side-mounted injectors at strong flashing conditions. The obtained numerical framework allows the identification of near-nozzle injection characteristics such as single plume direction, cone angle, spray initial velocity and spatial fuel density distribution. The presented results represent a unique dataset for the initialization of more-affordable Lagrangian spray models, which differentiate the behavior of side-mounted and center-mounted injectors.

Author(s):  
Ajrouche Hugo ◽  
Chiboub Ibrahim ◽  
Nilaphai Ob ◽  
Dozias Sébastien ◽  
Moreau Bruno ◽  
...  

Quantifying liquid mass distribution data in the dense near nozzle area to develop and optimize diesel spray byoptical diagnostic is challenging. Optical methods, while providing valuable information, have intrinsic limitations due to the strong scattering of visible light at gas-liquid boundaries. Because of the high density of the droplets near the nozzle, most optical methods are ineffective in this area and prevent the acquisition of reliable quantitative data. X-ray diagnostics offer a solution to this issue, since the main interaction between the fuel and the X-rays is absorption, rather than scattering, thus X-ray technique offers an appealing alternative to optical techniques for studying fuel sprays. Over the last decade, x-ray radiography experiments have demonstrated the ability to perform quantitative measurements in complex sprays. In the present work, an X-ray technique based on X-ray absorption has been conducted to perform measurements in dodecane fuel spray injected from a single-hole nozzle at high injection pressure and high temperature. The working fluid has been doped with DPX 9 containing a Cerium additive, which acts as a contrast agent. The first step of this work was to address the effect of this dopant, which increases the sensitivity of X-ray diagnostics due its strong photon absorption, on the behavior and the physical characteristics of n-dodecane spray. Comparisons of the diffused back illumination images acquired from n- dodecane spray with and without DPX 9 under similar operating conditions show several significant differences. The current data show clearly that the liquid penetration length is different when DPX 9 is mixed with dodecane. To address this problem, the dodecane was doped with a several quantities of DPX containing 25% ± 0.5 of Cerium. Experiments show that 1.25% of Ce doesn’t affect the behaviour of spray. Radiography and density measurements at ambient pressure and 60 bars are presented. Spray cone angle around 5° is obtained. The obtained data shows that the result is a compromise between the concentration of dopant for which the physical characteristics of thespray do not change and the visualization of the jet by X-ray for this concentration.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4705


Author(s):  
A. L. Kastengren ◽  
C. F. Powell ◽  
K.-S. Im ◽  
Y.-J. Wang ◽  
J. Wang

The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.


Author(s):  
Kristen Bishop ◽  
William Allan

The effects of fuel nozzle condition on the temperature distributions experienced by the nozzle guide vanes have been investigated using an optical patternator. Average spray cone angle, symmetry, and fuel streaks were quantified. An ambient pressure and temperature combustion chamber test rig was used to capture exit temperature distributions and to determine the pattern factor. The rig tests matched representative engine operating conditions by matching Mach number, equivalence ratio, and fuel droplet size. It was observed that very small deviations (± 10° in spray cone angle) from a nominal distribution in the fuel nozzle spray pattern correlated to increases in pattern factor, apparently due to a degradation of mixing processes, which created larger regions of very high temperature core flow and smaller regions of cooler temperatures within the combustion chamber exit plane. The spray cone angle had the most measureable influence while the effects of spray roundness and streak intensity had slightly less influence. Comparisons were made with published studies conducted on the combustion chamber geometry, and recommendations were made for fuel nozzle inspections.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Fuel availability, global warming, and energy security are the three main driving forces, which determine suitability and long-term implementation potential of a renewable fuel for internal combustion engines for a variety of applications. Comprehensive engine experiments were conducted in a single-cylinder gasoline direct injection (GDI) engine prototype having a compression ratio of 10.5, for gaining insights into application of mixtures of gasoline and primary alcohols. Performance, emissions, combustion, and particulate characteristics were determined at different engine speeds (1500, 2000, 2500, 3000 rpm), different fuel injection pressures (FIP: 40, 80, 120, 160 bars) and different test fuel blends namely 15% (v/v) butanol, ethanol, and methanol blended with gasoline, respectively (Bu15, E15, and M15) and baseline gasoline at a fixed (optimum) spark timing of 24 deg before top dead center (bTDC). For a majority of operating conditions, gasohols exhibited superior characteristics except minor engine performance penalty. Gasohols therefore emerged as serious candidate as a transitional renewable fuel for utilization in the existing GDI engines, without requirement of any major hardware changes.


Author(s):  
Xiang Li ◽  
Yi-qiang Pei ◽  
Jing Qin ◽  
Dan Zhang ◽  
Kun Wang ◽  
...  

This research systematically studied the effect of injection pressure on macroscopic spray characteristics of a five-hole gasoline direct injection (GDI) injector fueled with ethanol, especially under ultra-high injection pressure up to 50 MPa. The front and side views of sprays were photographed by the schlieren method using a high-speed camera. Various parameters, including spray development stages, cone angle, penetration, area and irregular ratio, were fully analyzed to evaluate macroscopic characteristics of the whole spray and spray core with varying injection pressure. The results demonstrated that the effect of ultra-high injection pressure on macroscopic spray characteristics was significant. As injection pressure increased from 10 MPa to 50 MPa, the occurrence time of branch-like structure decreased; the cone angle increased little; the area increased significantly; the area ratio dropped by 6.4 and 5.8 percentage points on average for the front view and side view spray, respectively. There was a significant increase in the trend for penetration as the injection pressure rose from 10 MPa to 30 MPa. However, this trend became weak when the injection pressure further increased. The penetration ratio under ultra-high injection pressure was slightly higher than it was under 10 or 20 MPa. Ultra-high injection pressure would not obviously raise the possibility of spray/wall impingement, but led to the impingement quantity increasing to some extent. Increasing injection pressure could enhance the vortex scale, finally resulting in better air/fuel mixing quality. Ultra-high injection pressure was a potential way to improve air/fuel mixture homogeneity for a GDI injector fueled with ethanol.


Author(s):  
Brandon A. Sforzo ◽  
Aniket Tekawade ◽  
Alan L. Kastengren ◽  
Kamel Fezzaa ◽  
Jan Ilavsky ◽  
...  

Abstract The effects of fuel blend properties on spray and injector performance has been investigated for several operating conditions in a side-mount injector for Gasoline Direct Injection (GDI) using two certification fuel blends, Euro 5 and Euro 6. Several X-ray diagnostic techniques were conducted to characterize the injector and spray morphology. Detailed internal geometry of the GDI injector was measured with a feature-resolution of 1.8 micrometers, through the use of hard X-ray tomography. The geometry characterization of this six-hole GDI, side mount injector, quantifies relevant hole and counterbore dimensions and reveals the intricate details within the flow passages, including surface roughness and micron-sized features. Internal valve motion was measured with a temporal resolution of 20 microseconds and a spatial resolution of 2.0 micrometers, for three injection pressures and several injector energizing strategies. The needle motion for both fuels exhibit similar lift profiles for common energizing commands. A combination of X-ray radiography and Ultra-Small-Angle X-ray Scattering (USAXS) was used to characterize the fuel mass distribution and the droplet sizing, respectively. Tomographic spray radiography revealed the near-nozzle distribution of fuel mass for each of the fuels, and the asymmetry produced by the angled nozzles. Under evaporative conditions, the two fuels show minor differences in peak fuel mass distribution during steady injection, though both exhibit fluctuations in injection during the early, transient phase. US-AXS measurements of the path-specific surface area of the spray indicated lower peak values for the more evaporative conditions in the near nozzle region. These spray measurements portray the specific behavior of real fuel blends under a variety of conditions, illustrating the need to examine multi-component fuels to better understand relevant cases. Furthermore, this work furnishes the realistic boundary values for simulations to appropriately predict the sprays which were experimentally measured, and influenced by those realistic conditions.


1997 ◽  
Vol 119 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Q. P. Zheng ◽  
A. K. Jasuja ◽  
A. H. Lefebvre

A single-velocity-component phase Doppler particle analyzer is used to survey and measure local variations in drop-size distributions and drop velocities in the nearnozzle region of a practical, contraswirling, prefilming airblast atomizer. The technique of laser sheet imaging is used to obtain global patterns of the spray. All measurements are taken with a constant pressure drop across the atomizer of 5 percent, at ambient air pressures of 1, 6, and 12 bar. The liquid employed is aviation kerosine at flow rates up to 75 g/s. The results show that increasing the air pressure from 1 to 12 bar at a constant air/fuel ratio causes the initial spray cone angle to widen from 70 to 105 deg. Farther downstream the spray volume remains largely unaffected by variations in atomizer operating conditions. However, the radial distribution of fuel within the spray volume is such that increases in fuel flow rate cause a larger proportion of fuel to be contained in the outer regions of the spray. The effect of ambient pressure on the overall Sauter mean diameter is small. This is attributed to the fact that the rapid disintegration of the fuel sheet produced by the contraswirling air streams ensures that the atomization process is dominated by the “prompt” mechanism. For this mode of liquid breakup, theory predicts that mean drop sizes are independent of air pressure.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
A. L. Kastengren ◽  
C. F. Powell ◽  
T. Riedel ◽  
S.-K. Cheong ◽  
K.-S. Im ◽  
...  

X-ray radiography was used to measure the behavior of four fuel sprays from a light-duty common-rail diesel injector. The sprays were at 250bar injection pressure and 1bar ambient pressure. Injection durations of 400μs and 1000μs were tested, as were axial single-hole nozzles with hydroground and nonhydroground geometries. The X-ray data provide quantitative measurements of the internal mass distribution of the spray, including near the injector orifice. Such measurements are not possible with optical diagnostics. The 400μs sprays from the hydroground and nonhydroground nozzles appear qualitatively similar. The 1000μs spray from the nonhydroground nozzle has a relatively consistent moderate width, while that from the hydroground nozzle is quite wide before transitioning into a narrow jet. The positions of the leading- and trailing-edges of the spray have also been determined, as has the amount of fuel residing in a concentrated structure near the leading edge of the spray.


Sign in / Sign up

Export Citation Format

Share Document