Activities ONDRAF/NIRAS Related to the Decommissioning of Nuclear Facilities

Author(s):  
J. Cantarella ◽  
R. Simenon ◽  
M. Braeckeveldt

Since 1980, the Agency is responsible by law for the safe management of all radioactive waste produced in Belgium, including decommissioning wastes. By the law of 11 January 1991 and the implementing Royal Decree of 16/10/1991, ONDRAF/NIRAS has been entrusted with a mission concerning the decommissioning of nuclear facilities. This mission involves the collection and assessment of data concerning decommissioning forecasts for nuclear facilities, the approval of facilities’ decommissioning programmes, the establishment — in consultation with operators — of financing conditions for decommissioning, as well as the implementation of these programmes on request by the operator, or in the case of its failure to do so. This is the case for the company Best Medical Belgium SA located at Fleurus (MDS Nordion SA, till April 2011), which produced radioisotopes for medical applications and went bankrupt in 2012. These installations have been entrusted to ONDRAF/NIRAS. A plan of action was developed for taking-over the operations in the framework of remediation and decommissioning. Steps have been taken to integrate his new role as a nuclear operator. The installations of Best Medical Belgium SA are now referred to as the “O/N - Site Fleurus.” Nuclear facility operators, or any person requesting to operate a nuclear facility, are obliged to provide ONDRAF/NIRAS, under their responsibility and in due time, with all the necessary information concerning these facilities’ decommissioning forecasts, the nature, quantities and dates of transfer of the resulting waste, and the financing conditions for these facilities’ decommissioning. In order to make the necessary funds available for decommissioning a nuclear facility when it will be shut down, operators are obliged to establish provisions during the facility’s active life. These provisions are calculated in such a way that the total amount established at the time of the final shutdown covers all costs resulting from the facility’s final phase, namely the preparation of decommissioning, decontamination, more or less long-term maintenance, dismantling, treatment, conditioning and disposal of waste produced during this phase. In order to face to multiple and repeated evaluation processes, the Agency, already in the early 90’s, started with the implementation of its own integrated data processing system, recording the physical and radiological inventories of nuclear facilities, and allowing the evaluation of the quantities of decommissioning materials and wastes as well as of the decommissioning costs of these facilities. The cost evaluations cover all decommissioning activities from final shutdown of the facility until final release from nuclear control, as well as conventional demolition and site restoration if required. Beside the information related to the inventories, the database involves so called auxiliary tables integrating unit prices of the various decontamination and dismantling techniques, unit rates for radioactive waste processing, interim storage and final disposal.

Author(s):  
Marin Dinca

National Agency for Radioactive Waste — ANDRAD — is in Romania, by law, the competent authority for the disposal administration of spent nuclear fuel and radioactive waste and for the coordination of the predisposal management of spent nuclear fuel and radioactive waste, inclusive decommissioning of nuclear facilities. Government Ordinance (GO) No. 11/January 30, 2003 and Government Decision (GD) No. 1601/December 23, 2003 established the ANDRAD’s foundation and organization. In accordance with GO No. 11/2003, republished, on the safe management of the radioactive waste, ANDRAD has the responsibility to endorse the decommissioning documentation issued by the main radioactive waste generators (nuclear installations and other major radiological installations: radioactive waste treatment plants, radioactive waste storage facilities, post irradiation examination laboratories, centres for radioisotopes production etc.). ANDRAD receives for endorsement some of the documentation for decommissioning that is provided by enforced norms for each type of nuclear facility. There are presented the nuclear facilities that must have decommissioning documentation endorsed by ANDRAD, the type of documents submitted by license holder to ANDRAD and the procedure of endorsement in relation with the regulatory body (CNCAN) approval of the decommissioning documents.


Author(s):  
Marnix Braeckeveldt ◽  
Peter De Preter ◽  
Jan Michiels ◽  
Ste´phane Pepin ◽  
Manfred Schrauben ◽  
...  

Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium’s federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port’s alarm goes off. Following the publication of the European guideline 2003/122/Euratom of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund.


Author(s):  
Joris Creemers ◽  
Gilles Hermans ◽  
Virginie Schrayen ◽  
Frederik Van Wonterghem ◽  
An Wertelaers ◽  
...  

Belgium can rely on significant experience in the field of decontamination and decommissioning of nuclear facilities. Several projects are ongoing and include research reactors (BR3, Thetis), uranium and MOX fuel fabrication plants (FBFC International, Belgonucleaire), fuel reprocessing facilities (Eurochemic) and radwaste processing facilities (Belgoprocess). Additional projects are expected in the coming years with the planned final shutdown of the oldest nuclear power reactor units. Two national authorities are involved in the decontamination and decommissioning process of nuclear facilities. The FANC (together with its subsidiary Bel V) is concerned for all matters related to nuclear safety and radiation protection, while NIRAS/ONDRAF is concerned for all matters related to radioactive waste and fuel management and financial provisions. These attributions ensure that all safety and material concerns are addressed and that both the licensees and the national authorities bear their own responsibilities. They rely on an existing regulatory framework covering both the procedural and the technical aspects of the decontamination and decommissioning activities. However, opportunities for regulatory improvement were raised after some recent events in Belgium, among which the bankruptcy of a nuclear company producing radioisotopes, involving numerous additional interested parties in a complex judiciary context. Amendments in the current regulations are considered to increase the prerogatives of the authorities regarding the management of radioactive waste by a licensee, the transfer of an operating license from an operator to another, and the general decommissioning strategy of a facility. Furthermore, a dedicated “waste and decommissioning” working group within WENRA defined new reference levels applying to the decontamination and decommissioning of nuclear facilities. Belgium committed to include these requirements explicitly in its national legislation, even though most of them were already included in the existing decommissioning authorizations. Amendments will cover the safety provisions inherent to the decontamination and decommissioning phase, such as the decommissioning strategy, the qualification of techniques, the experience feedback valorization, the periodic safety reviews, the radioactive waste management, or the final characterization of the sites. Additionally, requirements regarding the authorization process will be detailed, such as the content of the licensee’s application file or the structure of the safety report covering the decontamination and decommissioning phase. These changes will contribute to a more secure regulatory framework for all interested parties.


Author(s):  
J. Devgun ◽  
D. Demoss ◽  
S. Raupp

Decommissioning of nuclear facilities requires management of bulk materials on a large scale. Clearance (also called “free release”) is an essential part of material management and is necessary to reduce the amount of radioactive waste generated. Cleared materials can either be recycled for other use or disposed of as conventional waste. While guidance for decommissioning of reactors in the United States is well established by the Nuclear Regulatory Commission (NRC) and License Termination criteria as codified in 10 CFR 20 Subpart E are applied, there is no specific criteria or detailed guidance for the clearance of solid materials. The issue has been around for over three decades. The approach taken by the NRC is still on a case by case basis. In contrast, the guidance at the international scene is more detailed and clearance of solid materials (for recycling or disposition) from the decommissioning of nuclear facilities is regularly practiced in European countries (such as, Sweden, Belgium and Germany). The cost of disposal of bulk materials from decommissioning, such as demolition debris that may or may not be contaminated, as radioactive waste is prohibitive. A path to free release under some criteria is necessary. It is not a question of radiological safety since there is consensus on extremely low dose criteria and these are accepted at the international level. It is rather, an issue of regulatory void in the United States where clarity and explicit guidance at the national level is pending. This paper provides an overview of national and international guidance and regulatory developments for the clearance of solid materials from nuclear decommissioning projects including dose risk based methodologies. It will summarize the cost dimension of the issue and the field experience gained from the Big Rock Point decommissioning project.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2630
Author(s):  
Luigi Cosentino ◽  
Quentin Ducasse ◽  
Martina Giuffrida ◽  
Sergio Lo Meo ◽  
Fabio Longhitano ◽  
...  

In the framework of the MICADO (Measurement and Instrumentation for Cleaning And Decommissioning Operations) European Union (EU) project, aimed at the full digitization of low- and intermediate-level radioactive waste management, a set of 32 solid state thermal neutron detectors named SiLiF has been built and characterized. MICADO encompasses a complete active and passive characterization of the radwaste drums with neutrons and gamma rays, followed by a longer-term monitoring phase. The SiLiF detectors are suitable for the monitoring of nuclear materials and can be used around radioactive waste drums possibly containing small quantities of actinides, as well as around spent fuel casks in interim storage or during transportation. Suitable polyethylene moderators can be exploited to better shape the detector response to the expected neutron spectrum, according to Monte Carlo simulations that were performed. These detectors were extensively tested with an AmBe neutron source, and the results show a quite uniform and reproducible behavior.


Author(s):  
Huan Lin ◽  
Tai-Wei Lan ◽  
Min-Tsang Chang ◽  
Wuu-Kune Cheng

The “Nuclear Materials and Radioactive Waste Management Act” (NMRWMA) in Taiwan has been in use since 2002. To promote further administrative efficiency and improve regulatory capacity, an amendment of the act has been initiated by the Atomic Energy Council (AEC). It is now being reviewed by outside experts and related communities so as to include the best understanding of risk management factors. For the future decommissioning challenges of nuclear facilities, the act is also being amended to comply with the regulatory requirements of the decommissioning mandates. Currently the Taiwan government is conducting government reorganization, and AEC will be reformed but will remain as an independent regulatory body. AEC will then be capable of improving the regulatory capacity for facilitating licensing and inspection, ensuring operational safety, environmental protection and public involvement, and giving a more flexible administrative discretion, such as expending the margin of penalty. The amendment is also required to provide a formal legal basis for the Nuclear Backend Fund, and to mandate the waste producers to take responsibility for any final debt repayment. In addition, this amendment promotes measures to prevent accidents or emergencies concerning radioactive materials and facilities and procedures to reduce the impact and effect of any unexpected events. Furthermore, this amendment intends to implement the concept of information transparency and public participation so as to meet the public needs. Finally, radioactive waste final disposal tasks have to be completed by waste producers under the supervision of the AEC.


Author(s):  
K. B. Gurnov ◽  
E. M. Izotova

At the present stage of development of surveillance tools, the most popular are radar tools. A special place among such systems is occupied by radars with a synthesized antenna aperture, which make it possible to obtain high-resolution radar images with a relatively small size of the antenna system. The creation of such radar facilities has a number of features, which increases the cost of the development process and increases the time frame, and verification of work can be complicated by the inability to form the required conditions. To eliminate such difficulties, it is advisable to create adequate mathematical models of systems that would allow you to conduct all the necessary tests and work out algorithms, with minimal time spent. In this paper, a phenomenological model of the reflected signal in SAR is proposed, and a SAR model is developed that has a block structure and can be supplemented with modules to identify new dependencies.


Author(s):  
Vladimir Nikolaevich Klochkov ◽  
Valery Gavrilovich Barchukov ◽  
Elena Vladimirovna Klochkova ◽  
Aleksei Andreevich Maksimov ◽  
Sergei Vasilyevich Berezin

2016 ◽  
Vol 95 (3) ◽  
pp. 217-219
Author(s):  
E.V. Verhoef ◽  
E.A.C. Neeft

Radioactive substances and ionising radiation are used in medicine, industry, agriculture, research, education and electricity production. This generates radioactive waste. In the Netherlands, this waste is collected, treated and stored by COVRA (Centrale Organisatie Voor Radioactief Afval). After interim storage for a period of at least 100 years, radioactive waste is intended for disposal. There is a world-wide scientific and technical consensus that geological disposal represents the safest and most sustainable end point for the management of radioactive waste (e.g. Council Directive, 2011).


2018 ◽  
Vol 8 (9) ◽  
pp. 1663 ◽  
Author(s):  
Marwa Abdelrahman ◽  
Mohamed ElBatanouny ◽  
Kenneth Dixon ◽  
Michael Serrato ◽  
Paul Ziehl

Reinforced concrete systems used in the construction of nuclear reactor buildings, spent fuel pools, and related nuclear facilities are subject to degradation over time. Corrosion of steel reinforcement and thermal cracking are potential degradation mechanisms that adversely affect durability. Remote monitoring of such degradation can be used to enable informed decision making for facility maintenance operations and projecting remaining service life. Acoustic emission (AE) monitoring has been successfully employed for the detection and evaluation of damage related to cracking and material degradation in laboratory settings. This paper describes the use of AE sensing systems for remote monitoring of active corrosion regions in a decommissioned reactor facility for a period of approximately one year. In parallel, a representative block was cut from a wall at a similar nuclear facility and monitored during an accelerated corrosion test in the laboratory. Electrochemical measurements were recorded periodically during the test to correlate AE activity to quantifiable corrosion measurements. The results of both investigations demonstrate the feasibility of using AE for corrosion damage detection and classification as well as its potential as a remote monitoring technique for structural condition assessment and prognosis of aging structures.


Sign in / Sign up

Export Citation Format

Share Document