Electrohydrodynamic and Shear-Stress Interfacial Instability of Two Streaming Viscous Liquid Inside a Microchannel for Normal Electric Fields

Author(s):  
Haiwang Li ◽  
Teck Neng Wong ◽  
Nam-Trung Nguyen

The electrohydrodynamic and shear-stress instability of the interface between two viscous fluids with different electrical properties under constant flowrates in microchannel is analytically and experimentally investigated. In analytical model, the two-layer system is subjected to an electric field normal to the interface between the two fluids; the electric field, surface charge and fluid dynamic are coupled only at the interface. In the experiments, two immiscible fluids, aqueous NaHCO3 (high electrical mobility fluid) and Poly (dimethylsiloxane) (low electrical mobility fluid) are pushed into the PMMA microchannel using syringes and syringe pump. The normal electric field is added to the aqueous NaHCO3 using high voltage power supply; the perturbation electric field are added using a function generator and a power amplifier. The results showed that the electric fields can induce the instability of fluids in microchannel; the increasing of viscosity and flowrates has a stabilizing effect to the flow; but increasing of thickness has a destabilizing effect to the flow. The results also show that the analytical solution has a good agreement with the experimental results.

1997 ◽  
Vol 3 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Siyoul Jang ◽  
John A. Tichy

Electro-Rheological (ER) fluid behavior is similar to Bingham fluid’ s. Only when the shear stress magnitude of ER fluid exceeds the yield stress, Newtonian flow results. Continuous shear strain rate equation about shear stress which simulates Bingham-like fluid shows viscosity variations. Shear yield stress is controlled by electric fields. Electric fields in circumferential direction around the journal are also changeable because of gap distance. These values make changes of spring and damping coefficients of journal bearings compared to Newtonian flow case. Implicit viscosity variation effects according to shear strain rates of fluid are included in generalized Reynolds' equation for submerged journal bearing. Fluid film pressure and perturbation pressures are solved using switch function of Elord's algorithm for cavitation boundary condition. Spring and damping coefficients are obtained for several parameters that determine the characteristics of ER fluids under a certain electric field. From these values stability region for simple rotor-bearing system is computed. It is found that there are no big differences in load capacities with the selected electric field parameters at low eccentric region and higher electric field can support more load with stability at low eccentric region.


2015 ◽  
Vol 784 ◽  
pp. 342-372 ◽  
Author(s):  
Y. A. Gaponenko ◽  
M. Torregrosa ◽  
V. Yasnou ◽  
A. Mialdun ◽  
V. Shevtsova

We present experimental evidence of the existence of an interfacial instability between two miscible liquids of similar (but non-identical) viscosities and densities under horizontal vibration. A stably stratified two-layer system is composed of the same binary mixture with different concentrations placed in a confined cell (with length twice as large as the height). Unlike the case of immiscible fluids, here, the interface is a transient layer of small but non-zero thickness. In the experiments, the frequency and amplitude were varied within the ranges 2–24 Hz and 1.5–16 mm, respectively. When the value of the oscillatory forcing increases, the amplitudes of the interface perturbations grow continuously, forming a saw-tooth frozen structure. This evolution is also examined numerically. In addition to the solutions of full 3-D Navier–Stokes equations, an averaging approach with separation of time scales is used for situations in which the forcing period is very small compared to the natural time scales of the problem. The simulation of averaged equations provides the explanation of the instability development, the calculations of the full nonlinear equations shed light on the decay of a wavy pattern. The results of numerical modelling perfectly support the experimental observations.


2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Muhammad Abu Bakar Sidik ◽  
Nuru Saniyyati Che Mohd Shukri ◽  
Hussein Ahmad ◽  
Zolkafle Buntat ◽  
Nouruddeen Bashir ◽  
...  

Weather can  be unpredictable as there are a lot of uncertainties in predicting thunderstorms. Most of our navigation systems, including those on air, land and water, as well as broadcasting systems, are directly affected by the weather on a daily basis. The inconsistent and unreliable nature of storms brings out the importance of research in atmospheric electric field data logging systems. This paper presents a study to develop a virtual instrument with the capability to analyse and store the magnitude (data) of atmospheric electric fields. The study was carried out using a LabVIEW virtual instrument and tested using data acquisition (DAQ) and a function generator. The developed virtual instrument consists of waveform chart, tabulated data, and histogram for real time observation. Moreover, it has feature to save and recall data for further analysis.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2405-2411 ◽  
Author(s):  
A. SHIBAYAMA ◽  
T. MIYAZAKI ◽  
K. YAMAGUCHI ◽  
K. MURAKAMI ◽  
T. FUJITA

Some functional fluids that respond to both magnetic and electric fields have been prepared and their characteristics are described. In this study, an electro-magnetorheological fluid (EMRF) dispersing zeolite particles containing metallic iron by reducing precipitated magnetite has been investigated. When the viscosity is measured by cone plate viscometer and cylindrical viscometer, electric and magnetic fields are applied both between cone and plate or two cylinders. In case of cone plate, the shear stress at constant shear rate increased with the increase of both magnetic field and electric field. On the other hand when the viscosity is measured by cylindrical viscometer, the shear stress at constant shear rate increased with the increase of electric field, however, the increase rate of shear stress by magnetic field is very small. In this case the magnetic field direction is perpendicular to electric field. The EMRF has typical characteristics to respond with magnetic and electric field. The shear stress of EMRF in electric field is stronger than that of magnetic field. Additionally, the inflection and peak point in the shear rate-shear stress curve are appeared and the behaviors of the clusters in the electric field are observed. The experimental results suggested that the fluid viscosity (shear stress/shear rate) is affected by the arrangement of clusters parallel or perpendicular to the direction of the EMRF flow.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Yannick Minet ◽  
Hans Zappe ◽  
Ingo Breunig ◽  
Karsten Buse

Whispering gallery resonators made out of lithium niobate allow for optical parametric oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical properties of this material. An important knob to tune and control these processes is, e.g., the linear electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial. Here, we study the average strength of the electric field in z-direction in the region of the optical mode for different configurations and geometries of lithium niobate whispering gallery resonators with the help of the finite element method. We find that in some configurations almost 100% is present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design considerations for future arrangements that may benefit from the strong electro-optic effect in bulk whispering gallery resonators made out of lithium niobate.


Sign in / Sign up

Export Citation Format

Share Document